ECE 313: Problem Set 9

Functions of a random variable, failure rate functions

Due: Wednesday October 27 at 4 p.m.

Reading: ECE 313 Notes Sections 3.8-3.10.

1. [Log random variables]

- (a) Let $Z = e^U$, where U is uniformly distributed over an interval [a, b]. Find the pdf, f_Z . Be sure to specify it over the entire real line. (The random variable Z is said to have a log uniform distribution because $\ln(Z)$ has a uniform distribution.)
- (b) Find E[Z]. (Hint: Use LOTUS.)
- (c) Let $Y = e^X$, where X has a normal distribution. For simplicity, suppose X has mean zero and variance one. Find the pdf, f_Y . (The random variable Y is said to have a log normal distribution because $\ln(Y)$ has a normal distribution. This distribution arises as the amplitude of a signal after propagation through a heterogeneous media such as in tomography or atmospheric propagation, where attenuation factors in different parts of the media are mutually independent.)
- (d) Find E[Y]. (Hint: Use LOTUS. Rewrite the integrand as a constant times a Gaussian pdf by completing the square in the exponent, and integrate out the pdf to get a simple answer.)
- 2. [Generation of random variables with specified probability density function]

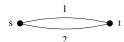
Find a function g so that, if U is uniformly distributed over the interval [0,1], and X=g(U), then X has the pdf:

$$f_X(v) = \begin{cases} 2v & \text{if } 0 \le u \le 1\\ 0 & \text{else.} \end{cases}$$

(Hint: Begin by finding the cumulative distribution function F_X .)

3. [Failure rate of a network with two parallel links]

Consider the s-t network with two parallel links, as shown:



Suppose that for each i, link i fails at time T_i , where T_1 and T_2 are independent, exponentially distributed with some parameter $\lambda > 0$. The network fails at time T, where $T = \max\{T_1, T_2\}$.

- (a) Express $F_T^c(t) = P\{T > t\}$ for $t \ge 0$ in terms of t and λ .
- (b) Find the pdf of T.
- (c) Find the failure rate function, h(t), for the network. Simplify your answer as much as possible. (Hint: Check that your expression for h satisfies h(0) = 0 and $\lim_{t \to \infty} h(t) = \lambda$.)
- (d) Find $P(\min\{T_1, T_2\} < t | T > t)$ and verify that $h(t) = \lambda P\{\min\{T_1, T_2\} < t | T > t)$. That is, the network failure rate at time t is λ times the conditional probability that at least one of the links has already failed by time t, given the network has not failed by time t.

4. [Cauchy vs. Gaussian detection problem]

On the basis of a sensor output X, it is to be decided which hypothesis is true: H_0 or H_1 . Under H_1 , X is a Gaussian random variable with mean zero and variance $\sigma^2 = 0.5$: $f_1(u) = \frac{1}{\sqrt{\pi}}e^{-u^2}$. Under H_0 , X has the Cauchy density, $f_0(u) = \frac{1}{\pi(1+u^2)}$.

- (a) Find the ML decision rule. Express it as simply as possible.
- (b) Find $p_{\text{false alarm}}$ and p_{miss} . Hint: the CDFs of X under the hypotheses are $F_0(c) = 0.5 + \frac{\arctan(c)}{\pi}$ and $F_1(c) = \Phi(c\sqrt{2})$, respectively.
- (c) Consider the decision rule that decides H_1 is true if $|X| \le 1.4$ and decides H_0 otherwise. This rule is the MAP rule for some prior distribution (π_1, π_0) . Find the ratio $\tau = \pi_0/\pi_1$ for that distribution.