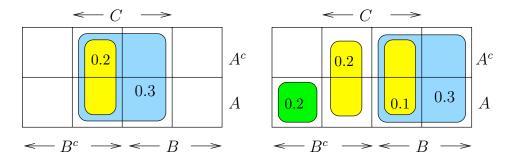
ECE 313: Hour Exam I

Monday October 12, 2009 7:00 p.m. - 8:00 p.m.100 Noves Laboratory

1. [15 points] Let A, B, and C denote three events defined on a sample space Ω , and suppose that $P(A) = 0.6, P(B) = P(C) = 0.3, \text{ and } P(B^c \cap C) = P(A \cap B^c \cap C^c) = 0.2.$

Solution: The Karnaugh maps shown below are very useful in visualizing the problem.



(a) [5 points] Find $P(B \cap C)$.

Solution: $P(B \cap C) = P(C) - P(B^c \cap C) = 0.3 - 0.2 = 0.1.$

- Note that $P(B \cup C) = P(B) + P(B^c \cap C) = 0.5$.
- (b) [5 points] Find $P(B \cap C^c)$.

Solution: $P(B \cap C^c) = P(B) - P(B \cap C) = 0.3 - 0.1 = 0.2.$

(c) [5 points] Find $P((A \cup B \cup C)^c)$.

Solution: $P((A \cup B \cup C)^c) = 1 - P(A \cup B \cup C) = 1 - [P(B \cup C) + P(A \cap B^c \cap C^c)]$ =1-[0.5+0.2]=0.3. Note that $P((A\cup B\cup C)^c)=P(A^c\cap B^c\cap C^c)$, and also that $P(B^c \cap C^c) = 1 - P(B \cup C) = 0.5.$

2. [10 points] A and B are events defined on a sample space Ω . Assume P(A), P(B) > 0. Mark each of the two statements below as TRUE or FALSE. No justification is needed.

TRUE FALSE

$$\square \qquad \qquad \square \qquad \qquad \text{If } P(A \mid B) = P(B \mid A), \text{ then } P(A) = P(B).$$

$$\square \qquad \qquad P(A \mid B)P(B) + P(A^c \mid B)P(B) = P(B).$$

Solution: The statement "If $P(A \mid B) = P(B \mid A)$, then P(A) = P(B)" seems to be true at first glance, but is in fact FALSE in general. (The statement is true if we are also told that $P(A \cap B) > 0.$

The statement " $P(A \mid B)P(B) + P(A^c \mid B)P(B) = P(B)$ " is TRUE. The left side is equal to $P(A \cap B) + P(A^c \cap B)$ which is the same as P(B) by the third axiom.

3. [30 points] Especially in this problem, you must provide sufficient explanation to justify your numerical answers.

A fair coin is tossed repeatedly until a Head occurs. N denotes the number of tosses.

Solution: Clearly, N is a geometric random variable with parameter $p = \frac{1}{2}$.

(a) [5 points] What is the expected value of N?

Solution: Since N is a geometric random variable with parameter $p=\frac{1}{2}$, $\mathsf{E}[N]=\frac{1}{p}=2$ using a formula that you might have on your sheet of notes.

Alternatively,
$$P\{N=k\} = 2^{-k}$$
 for $k \ge 1$, and hence $\mathsf{E}[N] = 1 \cdot 2^{-1} + 2 \cdot 2^{-2} + 3 \cdot 2^{-3} + \dots = \frac{1}{2} \cdot \left[1 + 2 \cdot 2^{-1} + 3 \cdot 2^{-2} + \dots\right] = \frac{1}{2} \cdot \frac{1}{(1 - \frac{1}{2})^2} = 2$ where

the series sum was found on Problem Set 0, and its importance in ECE 313 noted.

(b) [5 points] Find the numerical value of $P\{N > 5\}$.

Solution: Since N is a geometric random variable with parameter $p = \frac{1}{2}, P\{N > 5\} =$ $(1-p)^5 = \frac{1}{32}$ using a formula that you might have on your sheet of notes.

Alternatively, N > 5 if and only if the first five tosses resulted in Tails, and this has

probability
$$\left(\frac{1}{2}\right)^5 = \frac{1}{32}$$
.
Doing it an even harder way, $P\{N > 5\} = 2^{-6} + 2^{-7} + 2^{-8} + \dots = 2^{-6}[1 + 2^{-1} + 2^{-2} + \dots] = 2^{-6} \cdot \frac{1}{1 - \frac{1}{2}} = 2^{-5}$. Yowza!

(c) [10 points] Given that the event $P\{N > 5\}$ occurred, what is the expected value of N? **Solution:** N is the waiting time for a Head to occur, and E[N] is the average waiting time for a Head to occur. Given that the event $P\{N > 5\}$ occurred, that is, the first five tosses resulted in Tails, the waiting time for a Head (beginning with the 6th toss) is still the same by the memoryless property of the geometric distribution. Hence, $E[N \mid N > 5] = 5 + 2 = 7$ using the result from part (a).

Alternatively, conditioned on Tails on the first five tosses,

 $P\{N=6\}=2^{-1}, P\{N=7\}=2^{-2}, P\{N=8\}=2^{-3} \text{ and so on. Hence, the average value of } N \text{ conditioned on Tails on the first five tosses is } 6 \cdot 2^{-1} + 7 \cdot 2^{-2} + 8 \cdot 2^{-3} + \cdots = (5+1) \cdot 2^{-1} + (5+2) \cdot 2^{-2} + (5+3) \cdot 2^{-3} + \cdots = 5 \cdot \left[2^{-1} + 2^{-2} + 2^{-3} + \cdots\right] + 1 \cdot 2^{-1} + 2 \cdot 2^{-2} + 3 \cdot 2^{-3} + \cdots = 5 + 2 = 7 \text{ using the sum}$

evaluated in part (a).

(d) [10 points] Find the numerical value of $E[\cos(\pi N)]$.

Solution: $cos(\pi N) = \begin{cases} -1 & \text{if } N \text{ is odd,} \\ +1 & \text{if } N \text{ is even,} \end{cases} = (-1)^N$, and hence

$$\mathsf{E}[\cos(\pi N)] = -\frac{1}{2} + \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^3 + \dots = \left(-\frac{1}{2}\right) + \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right)^3 + \dots$$

 $=\frac{1}{1-(-\frac{1}{2})}-1=-\frac{1}{3}=P(\text{Wilma wins})-P(\text{Fred wins})$ when they play with a fair

4. [20 points] A fair coin is tossed 10 times.

Calculate the probability that the first 5 tosses are all Tails given that a total of 8 Tails occurred on the 10 tosses.

Solution: Let A denote the event that the first 5 tosses result in Tails, and B the event that 8 Tails occurred on the 10 tosses. We are asked to find $P(A \mid B) = P(A \cap B)/P(B)$. Now, the number of Tails on 10 tosses is a binomial random variable N with parameters $(10, \frac{1}{2})$, and thus, we have

$$P(B) = P\{N = 8\} = {10 \choose 8} \left(\frac{1}{2}\right)^8 \left(1 - \frac{1}{2}\right)^{10 - 8} = {10 \choose 2} \left(\frac{1}{2}\right)^{10} = \frac{10 \times 9}{1 \times 2} \times 2^{-10}.$$

On the other hand, $A \cap B = A \cap C$ where C is the event that 3 Tails occurred on the *last* 5 tosses. Since what occurred on the last five tosses is independent of what occurred on the first five tosses, we have that

$$P(A\cap B) = P(A\cap C) = 2^{-5}\binom{5}{3}\left(\frac{1}{2}\right)^3\left(\frac{1}{2}\right)^{5-3} = \binom{5}{2}\left(\frac{1}{2}\right)^{10} = \frac{5\times 4}{1\times 2}\times 2^{-10}.$$

Hence,
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{5 \times 4}{10 \times 9} = \frac{2}{9}$$
.

- 5. [25 points] Dilbert has 3 coins in his pocket, 2 of which are fair coins while the third is a biased coin with $P(H) = p \neq \frac{1}{2}$. The probability that a coin chosen at random from his pocket will land Tails is $\frac{7}{12}$.
 - (a) [10 points] What is the value of p? Solution: $P(T) = P(T \mid \text{fair coin})P(\text{fair coin}) + P(T \mid \text{biased coin})P(\text{biased coin})$ $= \frac{1}{2} \cdot \frac{2}{3} + (1-p) \cdot \frac{1}{3} = \frac{7}{12} \Rightarrow p = \frac{1}{4}.$
 - (b) [15 points] Dilbert picks two coins at random from his pocket, tosses each coin once, and observes a Head and a Tail. What is the conditional probability that both coins are fair?

Solution: $P(\text{one Head, one Tail} \mid \text{two fair coins}) = P(\{HT, TH\}) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$. $P(\text{one Head, one Tail} \mid \text{one fair, one biased})$

 $=P(\{\text{fair}=H, \text{biased}=T\}) + P(\{\text{biased}=H, \text{fair}=T\}) = \frac{1}{2} \cdot (1-p) + p \cdot \frac{1}{2} = \frac{1}{2}$ regardless of the value of p. Therefore, the theorem of total probability gives

$$\begin{split} P(\text{one Head, one Tail}) &= P(H,T \mid \text{two fair coins}) P(\text{two fair coins}) \\ &+ P(H,T \mid \text{one fair, one biased}) P(\text{one fair, one biased}) \\ &= \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}, \end{split}$$

and the *conditional* probability of both coins being fair given that one Head and one Tail was observed is, by Bayes' formula,

$$P(\text{both coins fair}|\text{one Head, one Tail}) = \frac{P(H, T|\text{two fair coins})P(\text{two fair coins})}{P(\text{one Head, one Tail})} = \frac{1/6}{1/2} = \frac{1}{3}$$

the same as the unconditional probability! What does this tell you about the events {both coins fair} and {one Head, one Tail}?