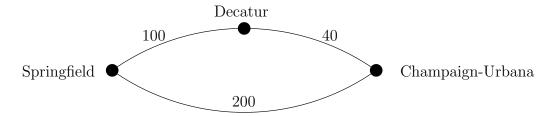
ECE 313: Hour Exam II

Monday November 16, 2009 7:00 p.m. — 8:00 p.m. 100 Materials Science and Engineering Building

1. [15 points] Messages can be transmitted between Champaign-Urbana and Springfield either directly or via Decatur on communication links whose capacities are indicated on the diagram shown below. Assume that the three links fail independently with equal probability $\frac{1}{2}$. Let \mathbb{X} denote the communication capacity between Champaign-Urbana and Springfield.



- (a) [5 points] What values can X take on?
- (b) [10 points] Find the expected value of X.
- 2. [10 points] Let \mathbb{X} denote a *Gaussian* random variable with mean 2 and variance 25. Use the table of values of the unit Gaussian CDF $\Phi(\cdot)$ on the last page of this exam booklet to find the numerical value of $P\{|\mathbb{X}-4|>3\}$.
- 3. [15 points] Let \mathbb{X} denote a continuous random variable with zero mean and variance 1, that is, $E[\mathbb{X}] = 0$ and $var(\mathbb{X}) = 1$.
 - (a) [10 points] Find the mean and variance of $\mathbb{Y} = 2\mathbb{X} + 3$.
 - (b) [5 points] Let $\mathbb{Z} = |\mathbb{X}|$. Mark TRUE or FALSE by checking one box below. You need not justify your answer.

TRUE FALSE \Box The variance of $\mathbb Z$ is greater than 1, that is $\mathsf{var}(\mathbb Z) > 1$.

- 4. [10 points] Let $\mathbb X$ denote an exponential random variable with mean 2.
 - (a) [5 points] Find $P\{X > 1\}$.
 - (b) [5 points] Calculate $P\{X > 3 \mid X > 2\}$.
- 5. [25 points] \mathbb{X} denotes a *uniform* random variable with mean 1 and variance 3.
 - (a) [10 points] Find $P\{X < 0\}$.
 - (b) [15 points] Find the pdf of $\mathbb{Y} = |\mathbb{X}|$. In order to receive full credit, you must specify the value of $f_{\mathbb{Y}}(v)$ for all $v, -\infty < v < \infty$.
- 6. [25 points] Consider the following binary hypothesis testing problem. If hypothesis H_0 is true, the continuous random variable \mathbb{X} is uniformly distributed on (-2,2), while if hypothesis H_1 is true, the pdf of \mathbb{X} is $f_1(u) = \begin{cases} \frac{|u|}{4}, & |u| < 2, \\ 0, & \text{otherwise.} \end{cases}$

- (a) [5 points] Find the decision region Γ_0 for the maximum-likelihood decision rule. Remember that Γ_0 is the set of all real numbers such that if $\mathbb{X} \in \Gamma_0$, the decision is that H_0 is the true hypothesis.
- (b) [10 points] Find the probability of false alarm P_{FA} and the probability of missed detection P_{MD} for the maximum-likelihood decision rule.
- (c) [10 points] Suppose that the hypotheses have a priori probabilities $\pi_0 = 1/3$ and $\pi_1 = 2/3$. Find the decision region Γ_0 for the maximum a posteriori probability (MAP) decision rule (also known as the minimum-error-probability or Bayesian decision rule).