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Hyperexponential Distribution

¥ A process with sequential phases gives rise to a
hypoexponential or an Erlang distribution, depending upon
whether or not the phases have identical distributions.

¥ If a process consists of alternate phases, i. e. during any single
experiment the process experiences one and only one of the
many alternate phases, and

¥ If these phases have independent exponential distributions,
then

¥ The overall distribution is hyperexponential.
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he hyperexponen
tial is a special case of m

ixture distributions
that often arise in practice:

¥
T

he hyperexponen
tial distribution exhibits m

ore variability than
the exponential, e.g

. C
P

U
 service-tim

e distribution in a com
puter

system
 often expresses this.

¥
If a product is m

anufactured in several parallel assem
bly lines

and the outputs are m
erged, then the failure d

ensity of the
overall product is likely to be hyperexpon

ential.
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¥
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he W
eibull distribution describes fatigue failure, vacuum

-tube
failure, and ball-bea

ring failure.

¥
It is the m

ost w
idely used param

etric fam
ily of failure

distributions.
¥

B
y a prope

r choice of its shape param
eter α

, an IF
R

, a D
F

R
, or

a constant failure rate distributio
n can be obtained.

¥
It can be used for all three phases of the m

ortality curve:
Ð

D
ensity:

Ð
D

istribution function:

Ð
H

azard rate:
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he cum
ulative hazard is a pow
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e X

 hours of a com
ponent is m

odeled by a W
eibull

distribution w
ith α

 =
 2.
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tarting w
ith a large num

ber of com
ponents, it is observed that

15 percent of the com
ponents that have lasted 90 h

ours fail
before 100 hours.  D
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ine the param

eter λ.
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xtrem
ely im

portant in statistical application becau
se of the

central lim
it theorem

:
Ð

U
nder very general assum

ptions, the m
ean of a sam

ple of n
m

utually independent random
 variables is norm

ally distributed in
the lim

it n →
 ∞

.

¥
E

rrors of m
easurem

ent often possess this distribution.

¥
D

uring the w
ear-out phase, com

ponent lifetim
e follow

s a norm
al

distribution.

¥
T

he norm
al density is given by:

w
here                                        are tw

o param
eters of the

distribution.
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he distribution function F
(x) has no closed form

, so betw
een

every pair of lim
its a and b, probabilitie

s relating to norm
al

distributions are usually obtain
ed num

erically a
nd recorded in

special tables.
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ince the standard norm
al density is clearly sy

m
m

etric, it follow
s

that for z >
 0:
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he tabulations of the norm
al distributio

n are m
ade only for z ≥ 0

T
o find P

(a ≤ Z
 ≤ b, use F

(b) - F
(a).
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or a particular value, x, of a norm
al random

 variable X
, the

corresponding value o
f the standardized variable Z

 is given by
:
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he distribution function of X
 can be found by u
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:

z
x

=
−

(
)/

µ
σ

F
z

P
Z

z

P
X

z

P
X

z

F
z

F
x

F
x

Z

X

X
Z

(
)

(
)

(
)

(
)

(
)

(
)

(
)

=
≤

=
−

≤

=
≤

+
=

+

=
−

         

         

         

µ
σ

µ
σ

µ
σµ

σ


