Discrete Random Variables

ECE 313

Probability with Engineering Applications
Lectures 13 & 14 - October 11 & 13, 1999
Professor Ravi K. Iyer
University of Illinois

Iyer - Lecture 13 ECE 313 - Fall 1999

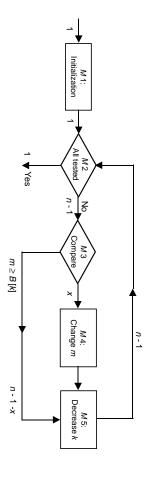
Analysis of Program Max

- Consider the Pascal program MAX that finds the largest element in the given array B.
- Given an array of n elements, B[1], B[2],....B[n], we will find m and j such that $m = B[j] = \max\{B[k] \mid 1 \le k \le n\}$, and for which j is as large as possible.

```
program MAX (input, output);
   label 1, 2, 3, 4, 5, 6;
   const n = 100;
   var j, k, m: integer;
         B: array [1..n] of integer;
begin
1: j := n; k := n - 1; m := B[n]
2: while (k > 0) do
      begin
          if B[k] > m
3:
            then
               begin
                  j := k;
                   m : = B[k]
               end;
          k := k - 1
      end;
6: writeln (j, m)
end.
```

Iyer - Lecture 13 ECE 313 - Fall 1999

- Analyze the time required for its execution.
- The time of execution depends on:
- machine
- compiler
- input data
- Examine the effect of input data on execution time
- We study frequency counts for each step.



Iyer - Lecture 13

ECE 313 - Fall 1999

Analysis of Program Max (cont.)

- current maximum. X is the number of times we must change the value of the
- Each such pattern may be considered a sample point with a the elements of the array B. The value of X depends on the pattern of numbers constituting
- fixed assigned probability. X can be thought of as a random variable over the sample

Step number	Frequency count	Number of statements
M1		ω
M2	n	_
M3	n - 1	_
M4	×	2
M5	n - 1	_
M6	_	_

Iyer - Lecture 13 ECE 313 - Fall 1999

- Determine the distribution of the random variable X for a given assignment of probabilities over the sample space.
- The image of the random variable X is $\{0, 1, ..., n 1\}$:
- minimum value of X occurs when $B[n] = \max \{B[k] \mid 1 \le k \le n\}$
- maximum value of X occurs when B[1] > B[2] > ... > B[n]
- generality, also assume the vector of elements (B[1], B[2],...B[n] is any one of the permutations of the integers {1, 2,...,n}, n! For simplicity, assume that B[k] are distinct values. Without a loss of
- Sample space S_n : set of all permutations of n integers $\{1, 2, ..., n\}$
- Assume that all n! permutations are equally likely.
- For all s in S_n , P(s) = 1/n!:

We define a random variable X_n as a function with domain S_n and the image {0, 1,..., *n* - 1}.

Iyer - Lecture 13 ECE 313 - Fall 1999

Analysis of Program Max (cont.)

As *n* changes, we have a sequence of random variables X_1 , The probability mass function of $X_{n},\
ho_{\chi_{n}}(k)$ is denoted by ho_{nk} $X_2,...$, where X_i is defined on the sample space S_i .

Then:

$$P_{nk} = P(X_n = k)$$
=
$$\frac{\text{numbers of permutations of } n \text{ objects for which } X_n = k}{n!}$$

ECE 313 - Fall 1999

• Now establish a recurrence relation for p_{nk} :

2,..., n}. Consider a sample point $s = (b_1, b_2, ..., b_n)$, a permutation on $\{1, 1, 1, 2, ..., b_n\}$

events: Consider two mutually exclusive and collectively exhaustive

$$A = "b_1 = n"$$

$$\overline{A} = "b_1 \neq n"$$

will force a change in the value of *m*. If event A occurs, then a comparison with b_1 (in program MAX)

Iyer - Lecture 13 ECE 313 - Fall 1999

Analysis of Program Max (cont.)

- obtained while examining the previous n -1 elements $(b_2,...,b_n)$. The value obtained for X_n will be one higher than a similar value
- Note that $(b_2,...,b_n)$ is a permutation on $\{1, 2, ..., n-1\}$.
- examining $(b_2,...,b_n)$ is X_{n-1} . The number of times the value of *m* gets changed while
- Inus: $P(X_n = k \mid A) = P(X_{n-1} = k-1)$ = $p_{n-1,k-1}$
- does not change when we examine b_1 : The occurrence of event \overline{A} implies that the count of exchanges

$$P(X_n = k \mid \overline{A}) = P(X_{n-1} = k)$$

= $p_{n-1,k}$

Iyer - Lecture 13 ECE 313 - Fall 1999

By assumption of equiprobable sample space, we have:

$$P(A)=1/n \text{ and } p(A)=(n-1)/n$$

By the theorem of total probability:

$$\begin{split} P_{nk} &= P(X_n = k) \\ &= P(X_n = k \mid A) P(A) + P(X_n = k \mid \overline{A}) P(\overline{A}) \\ &= \frac{1}{n} p_{n-1,k-1} + \frac{n-1}{n} p_{n-1,k} \end{split}$$

conditions. Thus, we can recursively compute ho_{nk} if we provide the initial

With n = 1, the **while** loop in program MAX will never be executed. Since the image of X_n is $\{0,1,...,n-1\}$, we know that: $P_{nk} = 0$ if k < 0.

Iyer - Lecture 13 ECE 313 - Fall 1999

Analysis of Program Max (cont.)

• Therefore $X_1 = 0$, i.e.

$$P(X_1=0) = \rho_{1,0} = 1$$
 and $P(X_1=1) = \rho_{1,1} = 0$

• The complete specification to evaluate p_{nk} is:

$$p_{1,0} = 1$$

 $p_{1,1} = 0$

$$p_{nk} = \begin{cases} \frac{1}{n} p_{n-1,k-1} + \frac{n-1}{n} p_{n-1,k}, & 0 \le k \le n-1, n \ge 2, \\ 0, & \text{otherwise.} \end{cases}$$

ECE 313 - Fall 1999