ECE 313: Problem Set #14

Assigned: December 4, 1998 **Due:** December 9, 1998

Reading: Ross, Chapter 7, sections 1–3, Chapter 8, sections 1–4.

- 1. Suppose that n fair dice are rolled. Let X, Y denote, respectively, the number of dice that show 1's and the number of dice that show 2's. Find Cov(X, Y).
- **2.** Let E[X] = 1, E[Y] = 4, Var(X) = 4, Var(Y) = 9, and $\rho_{X,Y} = 0.1$.
 - (a) If W = 3X + Y + 2, find E[W] and Var(W).
 - (b) If W is as above, and X, Y are jointly Gaussian random variables, what is $P\{W > 0\}$?
- 3. Let X_1, X_2, \cdots be an infinite sequence of independent, identically distributed, random variables with mean μ and variance σ^2 . We define $Y_n = X_n + X_{n+1} + X_{n+2}$, for $n = 1, 2, \cdots$. For each $k \geq 0$, compute $Cov(Y_n, Y_{n+k})$.
- 4. Suppose that X and Y are jointly Gaussian random variables. It is further known that:

$$E[X] = 0, \qquad E[Y] = 0, \qquad \operatorname{Var}(X) = \sigma_1^2, \qquad \operatorname{Var}(Y) = \sigma_2^2, \qquad \rho(X,Y) = \rho$$

Find an angle θ such that $Z = X \cos \theta + Y \sin \theta$ and $W = Y \cos \theta - X \sin \theta$ are independent Gaussian random variables. You may express your answer in terms of a trigonometric function of σ_1, σ_2 and ρ . In particular, what is the value of θ if $\sigma_1 = \sigma_2$?

 $\mathbf{5}$. A continuous random variable X has the following probability density function

$$f_X(u) = \begin{cases} 24u^{-4} & u \ge 2\\ 0 & \text{otherwise} \end{cases}$$

For $\delta > 0$, define the function $q(\delta) = P\{|X - \mu| > \delta\}$, where $\mu = E[X]$.

- (a) Give an expression for the actual value of $q(\delta)$ in terms of δ .
- (b) Use Chebyshev inequality to obtain an upper bound on $q(\delta)$.
- (c) Compute the values of $q(\delta)$ and the upper bound from (b) for $\delta = 0.5, 1, 2, 3, 5$. Use this data to sketch a graph of $q(\delta)$ and the upper bound thereupon.

6. [Extra Credit 10 pts:] The Sirrah Poll wishes to assess the popularity of Bill Clinton following the recent state of affairs in the White House. To this end, a random sample of n voters is asked for opinions. The opinion of the i-th voter is coded as X_i , where $X_i = 1$ if the voter supports the president and $X_i = 0$ otherwise. The Sirrah pollsters treat X_i s as independent random variables with $P\{X_i = 1\} = p$ for all i, and estimate p as the sample average $\hat{p} = \frac{1}{n}(X_1 + X_2 + \cdots + X_n)$. To be fairly sure of this estimate, the Sirrah Poll wants the following inequality to hold

$$P\{|\hat{p}-p| \ge 0.02\} \le 0.05$$

This would allow the media to announce that the Sirrah Poll has found that $100\hat{p}\%$ of the voters support the president, and that the margin of error of the poll is $\pm 2\%$.

- (a) Suppose that p = 0.3. Use the WLLN to find the minimum number N of voters that need to be surveyed to guarantee that the above inequality holds.
- (b) The Sirrah Poll naturally wants to minimize the number of voters surveyed in order to cut down the costs. However, the pollsters do not know the value of p (they wouldn't need the poll if they did!). How many voters should the Poll survey, so that the above inequality would be satisfied regardless of the value of p?