Assigned: Friday, November 20, 1998 Due: Wednesday, December 2, 1998

Reading: Ross, Chapters 6,7

- 1. Three points X_1, X_2, X_3 are independently selected at random from the interval [0, 2].
 - (a) What is the probability that X_2 lies between X_1 and X_3 ?
 - (b) What is the probability that the largest of the three (the largest is not necessarily X_3) is greater than 1?
 - (c) What is the probability that the largest of the three is greater than the sum of the other two?
- 2. Suppose **X**, **Y** and **Z** are independent random variables that are each equally likely to be either 1 or 2. Find the pmf of
 - (a) **XYZ**
 - (b) XY + YZ + XZ
 - (c) $X^2 + Y^2 + Z^2$
- 3. If **U** is uniform on $(0, 2\pi)$ and **Z**, independent of **U**, is exponential with parameter $\lambda = 1$,
 - (a) Find the joint density of the random variables \mathbf{X}, \mathbf{Y} defined by

$$\mathbf{X} = \sqrt{2\mathbf{Z}}\cos\mathbf{U}$$

$$\mathbf{Y} = \sqrt{2\mathbf{Z}}\sin\mathbf{U}$$

- (b) Show that \mathbf{X} and \mathbf{Y} are independent unit normal RVs, i.e., that they are independent and each of them is distributed as N(0,1).
- (c) What is the pdf of the random variable $\mathbf{R} = \sqrt{\mathbf{X}^2 + \mathbf{Y}^2}$?
- 4. \mathbf{X}_1 and \mathbf{X}_2 are independent random variables. \mathbf{X}_1 is uniformly distributed over (-1,1) and \mathbf{X}_2 is exponentially distributed with parameter $\lambda = 1$.
 - (a) Find the pdfs of the RVs $\mathbf{W} = \mathbf{X}_1 + \mathbf{X}_2$ and $\mathbf{Z} = \mathbf{X}_1/\mathbf{X}_2$.
 - (b) Find the joint pdf of \mathbf{W} and \mathbf{Z} .

- 5. Let (\mathbf{X}, \mathbf{Y}) be uniformly distributed on the interior of the square with vertices at (0,0), (0,1), (1,1) and (1,0).
 - (a) Are X and Y independent? Are they uncorrelated?
 - (b) Are random variables (X + Y) and (X Y) uncorrelated or independent?

Now let (\mathbf{X}, \mathbf{Y}) be uniformly distributed on the interior of another square with vertices at (2,0), (1,1), (0,0) and (1,-1).

- (b) Determine whether **X** and **Y** are uncorrelated or independent in this case. What does this say about random variables being independent and uncorrelated?
- (c) Are random variables (X + Y) and (X Y) uncorrelated or independent?
- 6. Ross, p.298, problem 43.
- 7. If \mathbf{X}, \mathbf{Y} and \mathbf{Z} are independent random variables having identical density functions $f(u) = e^{-u}$, $0 < u < \infty$, derive the joint distribution of $\mathbf{U} = \mathbf{X} + \mathbf{Y}$, $\mathbf{V} = \mathbf{X} + \mathbf{Z}$ and $\mathbf{W} = \mathbf{Y} + \mathbf{Z}$.
- 8. Let **X** and **Y** be Gaussian random variables with $E[\mathbf{X}] = 1$, $E[\mathbf{Y}] = -1$, $Var[\mathbf{X}] = 2$, $Var[\mathbf{Y}] = 1$ and $\rho_{X,Y} = 0.5$.
 - (a) If $\mathbf{Z} = 2(\mathbf{X} + \mathbf{Y})(\mathbf{X} \mathbf{Y})$, what is $E[\mathbf{Z}]$?
 - (b) If U = 2X 3Y and W = 2X + 3Y, what is cov(U, W)?
 - (c) What is the joint pdf of U and W?
- 9. Extra Credit [10pts]: If the random variables $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are independent, and chosen uniformly in the interval [0,1], what is the probability that all of the roots of the equation $\mathbf{A}x^2 + \mathbf{B}x + \mathbf{C} = 0$ are real?