University of Illinois

Problem Set 10

ECE 313 Fall 1998

Assigned: Wednesday, October 28, 1998

Due: Wednesday, November 4, 1998

Reading: Ross, Chapters 4,5

Additional problems : 5.3, 5.7, 5.8, 5.10, 5.12, 5.16–5.18, 5.25–5.26, 5.29, 5.32, 5.35–5.36, 5.39

- 1. **[15pts]** A number is chosen uniformly in (0, 1).
 - (a) Find the pdf/pmf of the negative of its logarithm (to base e).
 - (b) Find the pdf/pmf of the second decimal of its square root.
- 2. Let X have the following probability density function: $f_X(u) = \frac{1}{2u^2}$, $|u| \ge 1$, and 0 otherwise. Find the pdf/pmf of the following random variables:
 - (i) $\operatorname{sign}(\mathbf{X}+2)$, where $\operatorname{sign}(x)=1$, if $x\geq 0$; $\operatorname{sign}(x)=-1$, if x<0.
 - (ii) the random variable Y, where Y = 2|X|, if $|X| \le 2$; and $Y = X^2$, if $|X| \ge 2$.
- 3. Let **X** be a continuous RV with CDF $F_X(u)$.
 - (a) Define another random variable Y by $Y = F_X(X)$. Show that Y is uniformly distributed over the interval [0,1], **regardless** of what $F_X(u)$ is.
 - (b) Now let's do the reverse: We wish to generate a continuous RV X with a specified distribution (CDF) $\mathcal{F}(u)$, and all we are given is a uniform RV on [0,1]. Define the random variable X by $\mathbf{X} = \mathcal{F}^{-1}(\mathbf{Y})$ (remember that \mathcal{F} is monotonic increasing on [0,1]), where Y is uniform on [0,1]. Show that X has CDF $\mathcal{F}(u)$. (This is a widely used method to generate random variables of desired distributions, for example in computer simulations.)
- 4. **[20pts]** A generic communication system involves the transmission of a *known* signal s over a channel that corrupts it with additive noise, which is typically modeled as a Gaussian RV
 - $\mathbf{X} \sim N(0, \sigma^2)$. Thus, the received signal is a random variable given by $\mathbf{R} = s + \mathbf{X}$.
 - (a) What kind of random variable is \mathbf{R} ? Find its CDF and pdf (write down its CDF in terms of $\Phi(u)$, the CDF of a standard Gaussian random variable).
 - (b) Find the pdf of the RV $Y = e^{R}$, and plot it (Y is called a *lognormal* RV since $\ln Y$ is a normal (or Gaussian) RV. This random variable occurs often in wireless communications).
 - (c) We now discretize the signal at the receiver by passing it through an analog-to-digital (A/D) converter that *quantizes* the waveform. The input/output relations of two different quantizers are given in the diagram below. The receiver accurately estimates the mean of \mathbf{R} and quantizes it about this value. Therefore, the transition points in both cases occur symmetrically about $E[\mathbf{R}]$ (the mean of the received signal) i.e., at $E[\mathbf{R}] c$ and $E[\mathbf{R}] + c$. You can also assume that the noise variance $\sigma^2 = 1$.

- i. What kind of RV is Y, the output of the quantizer? Calculate and sketch its CDF for both Quantizer A and Quantizer B.
- ii. Now let us choose a value for c, thereby truly *designing* our quantizers. One way is to minimize the *mean squared error* between the input to the quantizer \mathbf{R} and output from the quantizer \mathbf{Y} with respect to c. That is, c is chosen so as to minimize $E[(\mathbf{R} \mathbf{Y})^2]$, where the expectation is with respect to the pdf of \mathbf{R} . Find this value of c for Quantizers A and B.

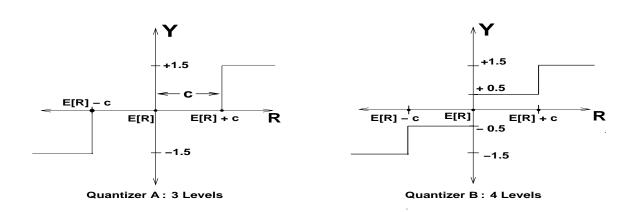


Figure 1: Three and four level Quantizers: Quantizer A is a 3-level quantizer; Quantizer B is a 4-level quantizer. The transition points in both cases are symmetrically spaced about $E[\mathbf{R}]$.

- 5. (a) It's Halloween time and the m&m jar in Calvin's house contains m&m's of N different colors in equal numbers. To keep him occupied, Calvin's mom tells him that he can eat a certain number of m&m's from the jar according to the following strategy: he should pick m&m's from the jar one by one, record their color and put them back in the jar. The moment he gets an m&m whose color he has picked before, he stops and eats one m&m for each color that he picked, including the one repetition. Let X be the RV denoting the number of m&m's that Calvin picks. What is the maximum value that X can take? Find the pmf of X.
 - (b) Calvin soon gets bored of this game and so his dad gives him this slightly more "interesting" game to play. Calvin is again supposed to start picking m&m's from the jar, recording their color and putting them back in the jar. This time, he stops only when he has seen **at least one m&m of each color**. We let Y be the RV denoting the number of m&m's that Calvin picks this time. What is the **minimum** value that Y can take? Find the pmf of Y.
 - (c) **Extra credit worth 25pts each:** In both the above games find the expected number of beans that Calvin will get to eat. (**Hint:** It might be easier in this case to *not* try to calculate this from first principles using the pmf of X or Y.)