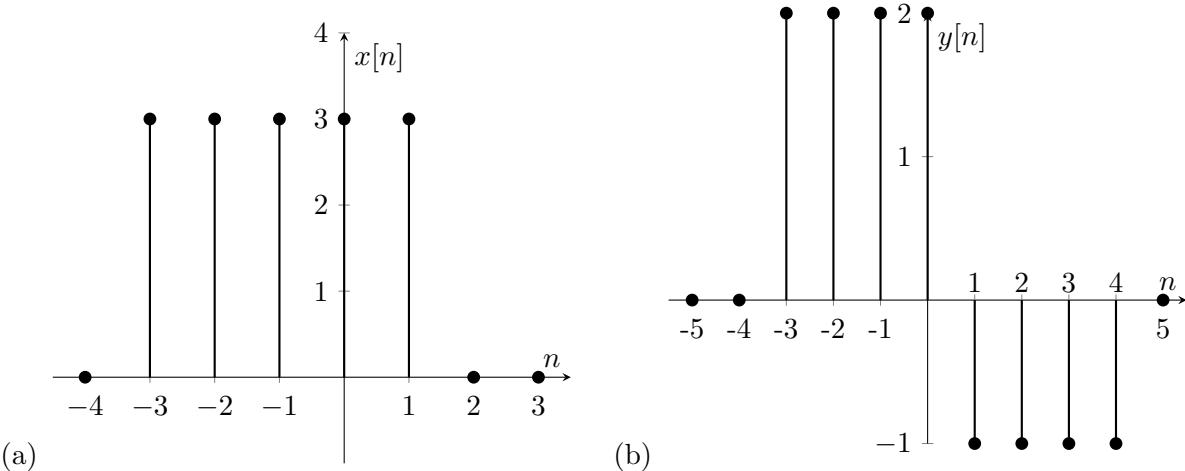


UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering
 ECE 310 DIGITAL SIGNAL PROCESSING – SPRING 2026
Homework 1

Profs. Snyder, Shomorony

Due: Friday, Jan 30, 11:59pm on Gradescope


1. Plot each of the following discrete-time signals for $-5 \leq n \leq 5$. Recall that $\delta[n]$ is the unit impulse or Kronecker delta and $u[n]$ is the unit step signal.

$$\begin{aligned} (a) \quad & \delta[n+4] - \delta[n+1] + 3\delta[n] + 2\delta[n-2] \\ (b) \quad & \left(\frac{2}{3}\right)^n (u[n+2] - u[n-3]) \\ (c) \quad & \cos\left(\frac{3\pi}{4}n - \frac{\pi}{4}\right) \end{aligned}$$

2. Let $x[n]$ be a length-8 discrete-time signal as given below.

$$x[n] = \{2, 1, -3, 4, 0, -2, 3, -1\}$$

(a) Sketch the signal $y[n]$ where $y[n] = x[2-n]$. **Please carefully label your plots!**
 (b) Sketch the signal $z[n]$ where $z[n] = x[2n+3]$.
 3. For each of the following plots of a discrete-time signal, express the signal in terms of (i) the Kronecker delta $\delta[n]$ and (ii) the unit-step signal $u[n]$. All samples not shown may be assumed to be zero.

4. For each of the following parts, (i) determine the values of z that satisfy the equation and (ii) plot these values of z on the complex plane. **Hint:** recall that complex numbers in exponential form may be written as $Re^{j\theta} = Re^{j(\theta_p + 2\pi k)}$ where $\theta_p \in [-\pi, \pi]$ is the *principal angle* and k is some integer.

$$\begin{aligned} (a) \quad & z^4 - 1 = 0 \\ (b) \quad & z^4 + 1 = 0 \end{aligned}$$

5. A clipping system is a common block included in larger digital systems. For constants a and b where $a < b$, the clipping system with input $x[n]$ produces output $y[n]$ as follows.

$$y[n] = \begin{cases} b, & x[n] \geq b \\ x[n], & a < x[n] < b \\ a, & x[n] \leq a \end{cases}$$

- (a) Let $x[n] = \{-4, -3, -2, -1, \underset{\uparrow}{0}, 1, 2, 3, 4\}$, $a = 0$, and $b = 3$. Sketch $y[n]$.
- (b) Determine if the system is linear or non-linear. Please provide justification, e.g. proof or counter-example.
- (c) Determine if the system is time-invariant or time-varying. Please provide justification.