List of Topics (not necessary complete) for Midterm 1

- Complex numbers and complex variables
- Discrete-time (DT) signals and their representation
- Sinusoidal DT signals, periodicity, frequency
- System Properties: Linearity (LI), Time-Invariance (TI), Causality, BIBO Stability.
 - o Determine system properties using their definitions for arbitrary systems
- LTI systems: relation between LTI property and convolution
- Impulse response
 - Determine the impulse response h[n] of an LTI system described by LCCDE, by iteration
 - $\circ~$ H[n] $\,$ relation to stability and causality of LTI systems
- Convolution computation
- The Bilateral z-Transform
 - Poles and zeros finite and infinite
 - Properties: ROC determined by poles and by left or right sidedness of sequence, linearity, shift, convolution, modulation, derivative wrt *z*
 - Computation of forward transform
 - Computation of inverse transform
 - Partial fraction expansion (Single poles, repeated poles)
- Applications of the z-transform
 - Transfer function *H(z)* of LTI systems
 - Relation between ROC of *H*(*z*) and LTI system stability and causality
 - Eigenfunction property of LTI systems
 - Computation of convolution
 - Solving LCCDE
 - o Converting between LTI system representations
 - LCCDE -> H(z)
 - LCCDE -> h[n]
 - *h*[*n*] -> LCCDE
 - *H(z)* -> LCCDE
 - Deconvolution: (i) determine input of LTI system given system and output; (ii) determine LTI system given input and output.
 - Connections (e.g., cascade, parallel) of LTI systems: determine complete system description and properties
 - Determine stability of LTI systems (described by *H(z), h[n]*, or LCCDE)