ECE 220

Lecture x0004 - 01/29

Slides based on material by: Yuting Chen, Yih-Chun Hu & Ujjal Bhowmik

ECE 220 - Spring '26 ILLINOIS

Recap

Implementation differences in
TOS convention

e | asttime we discussed:
* Current top-most element

e Stacks Next available spot

e Quarters vs. pancakes

A. Balanced parentheses

/ B. Palindrome check

 Examples of use cases for stacks C. Stack arithmetic

* |Implementing PUSH/POP

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Lesson objectives

 Understand and explain concepts of infix and postfix notation for
arithmetic.

 Understand and explain advantage of postfix notation over infix
notation. Be able to evaluate postfix expressions.

* Understand implementation of arithmetic using postfix notation and
stack ADT

 Understand steps necessary to implement an RPN calculator in LC3

e Know how to deal with overflow and underflow on the stack

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

RPN or postfix arithmetic

e Traditional arithmetic notation is called infix notation. Operations
are inserted between operands. E.g. S+ 3 or3 X 4

* Requires use of parenthesis to indicate order of operations

* An alternative notation is called postfix notation a.k.a Reverse
Polish notation (RPN). E.g. 5 3 + or 3 4 X

* |Implemented properly, does not require parenthesis/brackets

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Postfix expressions

 The syntax for a postfix operation is:

<operandl> <operand2> <operator>

 Operands may be postfix subexpressions

e 2—(5+4) =254+ -
|

Operand?

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Postfix expressions

 The syntax for a postfix operation is:
<operandl> <operand2> <operator>

 Advantage: no need for parentheses

¢+ 24+45%X4 = (2+5)x4or2+ (5x4)?

l l

254+4% 254 %+

ECE 220 - Spring '26 E ILLINOIS

Practice RPN - MP2 maternal

e Note: 53 — > 5—-3
e Consider:34*72 —3%*4
e What does it evaluate to?

e \What is the infix version of the above?

 Can we evaluate it using a stack?

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

34 X772 —3X+

W
I
= N

&)

|
E

u
g

3 POP FROM STACK

ECE 220 - Spring '26 E ILLINOIS

Postfix expressions

* Rewrite the following infix expressions in RPN:
. (8+4)
+ 7+ (9-6)/3

¢« O+(1+2)x4)-3

ECE 220 - Spring '26 E ILLINOIS

Postfix expressions

e Now evaluate them

e 834 +2 A
¢ 796 —3 =+

e 51244+ 3 —

ECE 220 - Spring '26 E ILLINOIS

Redo example - single pass?

}
e Expression:4 3 X772 —3X+

o Strategy:
* Numbers — Push
e Operator:
 Pop two elements

* Perform operation

e Push on stack

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

http://xahlee.info/comp/unicode_arrows.html

Redo example - single pass?

}
e Expression:4 3 X772 —3X+

o Strategy:
* Numbers — Push
e Operator:
 Pop two elements

* Perform operation

N

e Push on stack

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

http://xahlee.info/comp/unicode_arrows.html

Redo example - single pass?

}
e Expression:4 3 X772 —3X+

o Strategy:
* Numbers — Push
e Operator:
 Pop two elements

* Perform operation

N

e Push on stack

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

http://xahlee.info/comp/unicode_arrows.html

Redo example - single pass?

}
e Expression:4 3 X772 —3X+

o Strategy:
* Numbers — Push
e Operator:
 Pop two elements

* Perform operation

~

e Push on stack

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

http://xahlee.info/comp/unicode_arrows.html

Given that below is an evaluation of an RPN expression: what expression is being evaluated?

Stack usage - memory

Y3EEB | =~ x3FFB | w0007 x3FFB | w0002 x3FFB | w2000
x3FFC | o000 x3FFC | o000 x3FFC W x3FFC W
x3FFD o] Xx3FFD | x3FFD s Xx3FFD s
appE | FFE | s — 17 | STAK e | 7]
sl are | % e oonite o | % SN LN i
R6 x4000 o Reé Xx3FFF R6 Xx3FFE R6 x3FFF
Before After first push After second push After first pop
x3FFB | o000 x3FFB | =20 20022 x3FFB | ~oooo0027 3FEB | oo
x3FFC | o000 x3FFC | o002 x3FFC | o000 Y3EFC W
x3FFD Xx3FFD 2 [“PoNTER X3FFD 2] «3FFD [2]
x3FFE 3 — N X3FFE 3 X3FFE 5 Y3FEE 5
x3FFF * X3FFF 42 x3FFF 210 POINTER X3FFF 210
R6 x3FFE R6 | X3FFD R6 x3FFF R6 x4000 |+ SIACK
After third push After fourth push After 2nd & 3rd pops Pop

ECE 220 - Spring '26

ILLINOIS

This isn’t LC3! (It’s pseudocode)

Arithmetic using stack - LC3

e« Compute(A+B)X(C+D) « ComputeAB+CD+ Xand

and store result in RO store result in RO

;Implementation using registers ;Implementation using stack

ID RO, A LD RO, A

LD R1, B PUSH

ADD R1, RO, R1 ILD RO, B

LD R2, C PUSH

LD R3, D JSR ADD ;Assuming ADD exists

ADD R3, R2, R3 LD RO, C

JSR MULT PUSH ADD: POP two numbers,

HALT LD RO, D compute and then PUSH
PUSH result back

MULT: subroutine such that JSR ADD

Input: R1, R3 and Output: RO JSR MULTIPLY ;Assuming MULTIPLY exists

POP sRESULT in RO

MULTIPLY: POP two
numbers, compute and
then PUSH result back

ECE 220 - Spring '26 ILLINOIS

Postfix evaluation

Problem: Given a postfix expression with numerals and ‘+’, -°, **’ in the
form of a string, evaluate it and store the answer in R5. Each numeral IS
a single character.

Algorithm:
* Read the string (postfix expression) left to right
* Push the numbers in the expression on the stack

 For an operator, pop the top two elements, compute the answer and
push it on the stack

ECE 220 - Spring '26 ILLINOIS

Flowchart - ADD subroutine

START > POP — POP » ADD

Range
OK? —— 7 —
YES OK YES OK? YES
NO lNO lNO
v
Put back first Put back both PUSH
! ! ! !

Required reading: Section 10.2 and 10. 3 of Patt & Patel

ECE 220 - Spring '26 ILLINOIS

Implement ADD subroutine

» PUSH
;Input: RO (value to store on stack)
;Output: R5 (0-success, 1-fail)

o Save R7 before calling other
subroutines.

o Save registers that will be altered
In this subroutine

;s POP

;Output: RO (value to load from stack) « R6 is stack pointer (points to the

;Output: R5 (0-success, 1-fail) \ next available spot on the stack)
Assume PUSH, POP and

CHECK RANGE subroutines are

s CHECK RANGE . 4 —
= provided to you

;Input: RO (value to be checked)
;Output: R5 (0-success, 1-fail)

ECE 220 - Spring '26 ILLINOIS

; ADD subroutine — pop two numbers from stack,
; perform ’‘+’ operation and then push result back to

the stack
; check range of sum, go to RESTORE 2 if it failed

4

ADD OP
; save registers

; everything is good, push sum (already in R0O) to

stack
7
; initialize R5
RESTORE 1 ; put back first number
; first pop
; Load STACK TOP
s Put back item
; check return value of first pop, go to EXIT if it ; Update STACK TOP
failed (R5 = 1) ; Go to exit
;save value in R1 before second pop RESTORE 2 ; put back both numbers
; Load STACK TOP
; second pop ; Put back item(s)
; Update STACK TOP
7
; check result of second pop, go to RESTORE 1 if it EXIT
failed ; update stack top pointer
; restore registers
» add two numbers: RO <- RO + R1 RET

ECE 220 - Spring '26 E ILLINOIS

Next time

* |ntroduction to C
 Compiling a C program on EWS
 Running the GNU debugger etc.

* Bring your laptop!

ECE 220 - Spring '26 E ILLINOIS

