
ECE 220 - Spring '26 Dr. Ivan Abraham

ECE 220
Lecture x0004 - 01/29

Slides based on material by: Yuting Chen, Yih-Chun Hu & Ujjal Bhowmik

ECE 220 - Spring '26 Dr. Ivan Abraham

Recap
• Last time we discussed:

• Stacks

• Quarters vs. pancakes

• Implementing PUSH/POP

• Examples of use cases for stacks

2

A. Balanced parentheses

B. Palindrome check

C. Stack arithmetic

Implementation differences in
TOS convention

• Current top-most element

• Next available spot

ECE 220 - Spring '26 Dr. Ivan Abraham

Lesson objectives
• Understand and explain concepts of infix and postfix notation for

arithmetic.

• Understand and explain advantage of postfix notation over infix
notation. Be able to evaluate postfix expressions.

• Understand implementation of arithmetic using postfix notation and
stack ADT

• Understand steps necessary to implement an RPN calculator in LC3

• Know how to deal with overflow and underflow on the stack

3

ECE 220 - Spring '26 Dr. Ivan Abraham 4

• Traditional arithmetic notation is called infix notation. Operations
are inserted between operands. E.g. or

• Requires use of parenthesis to indicate order of operations

• An alternative notation is called postfix notation a.k.a Reverse
Polish notation (RPN). E.g. or

• Implemented properly, does not require parenthesis/brackets

5 + 3 3 × 4

5 3 + 3 4 ×

RPN or postfix arithmetic

ECE 220 - Spring '26 Dr. Ivan Abraham

Postfix expressions

5

• The syntax for a postfix operation is:

<operand1> <operand2> <operator>

•

• Operands may be postfix subexpressions

•

(2 + 5) = 7 ⟹ 2 5 +

2 − (5 + 4) ⟹ 2 5 4 + −

Operand2

ECE 220 - Spring '26 Dr. Ivan Abraham

Postfix expressions

6

• The syntax for a postfix operation is:

<operand1> <operand2> <operator>

• Advantage: no need for parentheses

• or ?
2 + 5 × 4 ⟹ (2 + 5) × 4 2 + (5 × 4)

2 5 + 4 × 2 5 4 × +

ECE 220 - Spring '26 Dr. Ivan Abraham

Practice RPN - MP2 material

7

• Note:

• Consider:

• What does it evaluate to?

• What is the infix version of the above?

• Can we evaluate it using a stack?

53 − ↦ 5 − 3

3 4 * 7 2 − 3 * +

ECE 220 - Spring '26 Dr. Ivan Abraham

-

3

X

8

+

POP FROM STACK3

4

x

7

2 = 5

= 15

= 12

= 27

Example
3 4 × 7 2 − 3 × +

ECE 220 - Spring '26 Dr. Ivan Abraham

Postfix expressions

9

• Rewrite the following infix expressions in RPN:

•

•

•

(8 + 4)2

7 + (9 − 6)/3

(5 + (1 + 2) × 4) − 3

ECE 220 - Spring '26 Dr. Ivan Abraham

Postfix expressions

10

• Now evaluate them

•

•

•

8 4 + 2 ∧

7 9 6 − 3 ÷ +

5 1 2 + 4 × + 3 −

ECE 220 - Spring '26 Dr. Ivan Abraham

• Expression:

• Strategy:

• Numbers → Push

• Operator:

• Pop two elements

• Perform operation

• Push on stack

4 3 × 7 2 − 3 × +

Redo example - single pass?

11

3
412

http://xahlee.info/comp/unicode_arrows.html

ECE 220 - Spring '26 Dr. Ivan Abraham

• Expression:

• Strategy:

• Numbers → Push

• Operator:

• Pop two elements

• Perform operation

• Push on stack

4 3 × 7 2 − 3 × +

12

12
7
2
5

Redo example - single pass?

http://xahlee.info/comp/unicode_arrows.html

ECE 220 - Spring '26 Dr. Ivan Abraham

• Expression:

• Strategy:

• Numbers → Push

• Operator:

• Pop two elements

• Perform operation

• Push on stack

4 3 × 7 2 − 3 × +

13

12
5
3
15

Redo example - single pass?

http://xahlee.info/comp/unicode_arrows.html

ECE 220 - Spring '26 Dr. Ivan Abraham

• Expression:

• Strategy:

• Numbers → Push

• Operator:

• Pop two elements

• Perform operation

• Push on stack

4 3 × 7 2 − 3 × +

14

27

Redo example - single pass?

http://xahlee.info/comp/unicode_arrows.html

ECE 220 - Spring '26 Dr. Ivan Abraham

Stack usage - memory

15

STACK

POINTER

Before

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000R6

STACK

POINTER

After first push

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x3FFFR6

25 25

STACK

POINTER

After second push

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x3FFER6

17

STACK

POINTER

After first pop

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x3FFFR6

42

17

STACK

POINTER

After third push

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x3FFER6

42

3

STACK

POINTER

After fourth push

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x3FFDR6

42

3

2

STACK

POINTER

After 2nd & 3rd pops

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x3FFF R6

210

5

2

210

5

2

STACK

POINTER

Pop

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000R6

Given that below is an evaluation of an RPN expression: what expression is being evaluated?

ECE 220 - Spring '26 Dr. Ivan Abraham

Arithmetic using stack - LC3

16

• Compute
and store result in R0

(A + B) × (C + D)

;Implementation using registers
LD R0, A
LD R1, B
ADD R1, R0, R1
LD R2, C
LD R3, D
ADD R3, R2, R3
JSR MULT
HALT

;Implementation using stack
LD R0, A
PUSH
LD R0, B
PUSH
JSR ADD ;Assuming ADD exists
LD R0, C
PUSH
LD R0, D
PUSH
JSR ADD
JSR MULTIPLY ;Assuming MULTIPLY exists
POP ;RESULT in R0

• Compute and
store result in R0

A B + C D + ×

ADD: POP two numbers,
compute and then PUSH
result back

MULTIPLY: POP two
numbers, compute and
then PUSH result back

MULT: subroutine such that
Input: R1, R3 and Output: R0

This isn’t LC3! (It’s pseudocode)

ECE 220 - Spring '26 Dr. Ivan Abraham

Postfix evaluation
Problem: Given a postfix expression with numerals and ‘+’, ‘-’, ‘*’ in the
form of a string, evaluate it and store the answer in R5. Each numeral is
a single character.

Algorithm:

•Read the string (postfix expression) left to right

•Push the numbers in the expression on the stack

•For an operator, pop the top two elements, compute the answer and
push it on the stack

17

ECE 220 - Spring '26 Dr. Ivan Abraham

PUSH

YES

Flowchart - ADD subroutine

18

START POP

OK?

POP

YES

ADD

YESOK?

Put back first

NO

Range
OK?

Put back both

NO

RETURN

NO

Required reading: Section 10.2 and 10. 3 of Patt & Patel

ECE 220 - Spring '26 Dr. Ivan Abraham

Implement ADD subroutine
• Save R7 before calling other

subroutines.

• Save registers that will be altered
in this subroutine

• R6 is stack pointer (points to the
next available spot on the stack)

• Assume PUSH, POP and
CHECK_RANGE subroutines are
provided to you

19

;PUSH
;Input: R0 (value to store on stack)
;Output: R5 (0-success, 1-fail)

;POP
;Output: R0 (value to load from stack)
;Output: R5 (0-success, 1-fail)

;CHECK_RANGE
;Input: R0 (value to be checked)
;Output: R5 (0-success, 1-fail)

ECE 220 - Spring '26 Dr. Ivan Abraham

; ADD subroutine – pop two numbers from stack,
; perform ‘+’ operation and then push result back to
the stack

ADD_OP
; save registers

; initialize R5

; first pop

; check return value of first pop, go to EXIT if it
failed (R5 = 1)

;save value in R1 before second pop

; second pop

; check result of second pop, go to RESTORE_1 if it
failed

 ; add two numbers: R0 <- R0 + R1

; check range of sum, go to RESTORE_2 if it failed

; everything is good, push sum (already in R0) to
stack
;

RESTORE_1 ; put back first number

 ; Load STACK_TOP
 ; Put back item
 ; Update STACK_TOP
 ; Go to exit

RESTORE_2 ; put back both numbers

 ; Load STACK_TOP
 ; Put back item(s)
 ; Update STACK_TOP
;
EXIT
; update stack top pointer
; restore registers

 RET

20

ECE 220 - Spring '26 Dr. Ivan Abraham

Next time

• Introduction to C

• Compiling a C program on EWS

• Running the GNU debugger etc.

• Bring your laptop!

21

