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Recap

Implementation differences in
TOS convention

e | asttime we discussed:
* Current top-most element

e Stacks  Next available spot

e Quarters vs. pancakes

A. Balanced parentheses

/ B. Palindrome check

 Examples of use cases for stacks C. Stack arithmetic

* |Implementing PUSH/POP
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Lesson objectives

 Understand and explain concepts of infix and postfix notation for
arithmetic.

 Understand and explain advantage of postfix notation over infix
notation. Be able to evaluate postfix expressions.

* Understand implementation of arithmetic using postfix notation and
stack ADT

 Understand steps necessary to implement an RPN calculator in LC3

e Know how to deal with overflow and underflow on the stack
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RPN or postfix arithmetic

e Traditional arithmetic notation is called infix notation. Operations
are inserted between operands. E.g. S+ 3 or3 X 4

* Requires use of parenthesis to indicate order of operations

* An alternative notation is called postfix notation a.k.a Reverse
Polish notation (RPN). E.g. 5 3 + or 3 4 X

* |Implemented properly, does not require parenthesis/brackets
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Postfix expressions

 The syntax for a postfix operation is:

<operandl> <operand2> <operator>

 Operands may be postfix subexpressions

e 2—(5+4) =254+ -
|

Operand?
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Postfix expressions

 The syntax for a postfix operation is:
<operandl> <operand2> <operator>

 Advantage: no need for parentheses

¢+ 24+45%X4 = (2+5)x4or2+ (5x4)?

l l

254+4% 254 %+
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Practice RPN - MP2 maternal

e Note: 53 — > 5—-3
e Consider:34*72 —3%*4
e What does it evaluate to?

e \What is the infix version of the above?

 Can we evaluate it using a stack?
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Postfix expressions

* Rewrite the following infix expressions in RPN:
. (8+4)
+ 7+ (9-6)/3

¢« O+(1+2)x4)-3
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Postfix expressions

e Now evaluate them

e 834 +2 A
¢ 796 —3 =+

e 51244+ 3 —
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Redo example - single pass?

}
e Expression:4 3 X772 —3X+

o Strategy:
* Numbers — Push
e Operator:
 Pop two elements

* Perform operation

e Push on stack
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Redo example - single pass?
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o Strategy:
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e Operator:
 Pop two elements
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Given that below is an evaluation of an RPN expression: what expression is being evaluated?

Stack usage - memory

Y3EEB | =~ x3FFB | w0007 x3FFB | w0002 x3FFB | w2000
x3FFC | o000 x3FFC | o000 x3FFC W x3FFC W
x3FFD o] Xx3FFD | x3FFD s Xx3FFD s
appE | FFE | s — 17 | STAK e | 7]
sl are | % e oonite o | % SN LN i
R6 x4000 o Reé Xx3FFF R6 Xx3FFE R6 x3FFF
Before After first push After second push After first pop
x3FFB | o000 x3FFB | =20 20022 x3FFB | ~oooo0027 3FEB | oo
x3FFC | o000 x3FFC | o002 x3FFC | o000 Y3EFC W
x3FFD Xx3FFD 2 [“PoNTER  X3FFD 2] «3FFD [ 2]
x3FFE 3 — N X3FFE 3 X3FFE 5 Y3FEE 5
x3FFF * X3FFF 42 x3FFF 210 POINTER  X3FFF 210
R6 x3FFE R6 | X3FFD R6 x3FFF R6 x4000 |+ SIACK
After third push After fourth push After 2nd & 3rd pops Pop
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This isn’t LC3! (It’s pseudocode)

Arithmetic using stack - LC3

e« Compute(A+B)X(C+D) « ComputeAB+CD+ Xand

and store result in RO store result in RO

;Implementation using registers ;Implementation using stack

ID RO, A LD RO, A

LD R1, B PUSH

ADD R1, RO, R1 ILD RO, B

LD R2, C PUSH

LD R3, D JSR ADD ;Assuming ADD exists

ADD R3, R2, R3 LD RO, C

JSR MULT PUSH ADD: POP two numbers,

HALT LD RO, D compute and then PUSH
PUSH result back

MULT: subroutine such that JSR ADD

Input: R1, R3 and Output: RO JSR MULTIPLY ;Assuming MULTIPLY exists

POP sRESULT in RO

MULTIPLY: POP two
numbers, compute and
then PUSH result back
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Postfix evaluation

Problem: Given a postfix expression with numerals and ‘+’, -°, **’ in the
form of a string, evaluate it and store the answer in R5. Each numeral IS
a single character.

Algorithm:
* Read the string (postfix expression) left to right
* Push the numbers in the expression on the stack

 For an operator, pop the top two elements, compute the answer and
push it on the stack
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Flowchart - ADD subroutine

START >  POP — POP » ADD

Range
OK? —— 7 —
YES OK YES OK? YES
NO lNO lNO
v
Put back first Put back both PUSH
! ! ! !

Required reading: Section 10.2 and 10. 3 of Patt & Patel
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Implement ADD subroutine

» PUSH
;Input: RO (value to store on stack)
;Output: R5 (0-success, 1-fail)

o Save R7 before calling other
subroutines.

o Save registers that will be altered
In this subroutine

;s POP

;Output: RO (value to load from stack) « R6 is stack pointer (points to the

;Output: R5 (0-success, 1-fail) \ next available spot on the stack)
Assume PUSH, POP and

CHECK RANGE subroutines are

s CHECK RANGE . 4 —
= provided to you

;Input: RO (value to be checked)
;Output: R5 (0-success, 1-fail)
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; ADD subroutine — pop two numbers from stack,
; perform ’‘+’ operation and then push result back to

the stack
; check range of sum, go to RESTORE 2 if it failed

4

ADD OP
; save registers

; everything is good, push sum (already in R0O) to

stack
7
; initialize R5
RESTORE 1 ; put back first number
; first pop
; Load STACK TOP
s Put back item
; check return value of first pop, go to EXIT if it ; Update STACK TOP
failed (R5 = 1) ; Go to exit
;save value in R1 before second pop RESTORE 2 ; put back both numbers
; Load STACK TOP
; second pop ; Put back item(s)
; Update STACK TOP
7
; check result of second pop, go to RESTORE 1 if it EXIT
failed ; update stack top pointer
; restore registers
» add two numbers: RO <- RO + R1 RET
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Next time

* |ntroduction to C
 Compiling a C program on EWS
 Running the GNU debugger etc.

* Bring your laptop!
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