ECE 220

Lecture x0003 - 01/27

Slides based on material by: Yuting Chen, Yih-Chun Hu & Ujjal Bhowmik

ECE 220 - Spring '26 ILLINOIS

Recap

 [ast week, we talked about
» Keyboard/Display polling and handshaking
* Subroutines & TRAP mechanism
» Callee and caller save conventions

e TRAP’s RTI uses a different mechanism than RET / JMP R7

* The mechanism is called stack - an Abstract Data Type

 Reminders:
« MP1 is due Thursday. Make use of office hours!

e Can sign up to take mock quiz at CBTF now!

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

MP 1- Letter frequency decomposition

« Common practice in programming to decompose a task into
smaller subtasks

 \What did we learn that can help us do this?

* The task:
* Given an ASCII string (terminated by NUL)
 Count the occurrences of each letter (regardless of case), and
 The number of non-alphabetic characters, and

* Print out a histogram

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

MP 1- Letter frequency decomposition

YES Print
Histogram
* Printing histogram

\ Increment Which bin to increment?

e Divide into two tasks

 Counting a character

bin

Can only do this after checking entire string.
When is string done? — NUL Increment

counter

ECE 220 - Spring '26 E ILLINOIS

http://xahlee.info/comp/unicode_arrows.html

MP 1- Letter frequency decomposition

 Which bin to increment?

 Need to determine if character is alphabetic or non-alphabetic.

M-Mﬂ-ﬂﬂ-ﬂﬂ--

NUL DEL

Increment Yle M Count char
bin (1) > (4)

ECE 220 - Spring '26

MP 1- Letter frequency decomposition

 Which bin to increment?

 Need to determine if character is alphabetic or non-alphabetic.

o | Lo [| a0 o | 3] e

Count char Increment e MR Count char
> ‘A alpha A > ‘Z’

ECE 220 - Spring '26

MP 1- Letter frequency decomposition

 Which bin to increment?

 Need to determine if character is alphabetic or non-alphabetic.

M-Mﬂ-ﬂﬂ-ﬂﬂ--

NUL DEL

s Count char

ECE 220 - Spring '26

MP 1- Letter frequency decomposition

 Which bin to increment?

 Need to determine if character is alphabetic or non-alphabetic.

o | Lo [| a0 o | 3] e

Count char Increment o INCIEment
> ‘a’ alpha ‘'z’ non-alpha

ECE 220 - Spring '26

MP 1- Letter frequency decomposition

 What about initialization etc”? We need to do three things:
* fill the histogram with Os,

* |oad any useful values (such as ASCII characters to check the
region boundaries)

e and point to the start of the string

 How to increment alpha — see MP (code already provided)

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

http://xahlee.info/comp/unicode_arrows.html

MP 1- Letter frequency decomposition

NO Print
Histogram Code you need to write
Is this part.

NO

Increment
alpha

Increment
counter

ECE 220 - Spring '26 E ILLINOIS

Lesson Objectives

 Understand and explain the concept of an “Abstract Data Type”
with examples.

 Understand the Stack ADT conceptually as LIFO/FILO
 Understand the stack protocol & TOS conventions
* Implement the stack protocol in LC3 using subroutines

 Understand and explain simple uses of Stack ADT with examples

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Abstract Data Types

» Abstract Data Type (ADT) refers to a model for a data type that
combines the logical description of how data is viewed and the

operations that are allowed on it without regard to how they will be
implemented.

» Example: Integers as an ADT are zero, the natural numbers and
their additive inverses with the usual operations of addition,
multiplication, subtraction, etc. However, on a computer they
may be implemented as 2’s complements, IEEE 754, etc.

ECE 220 - Spring '26

lelelele 'ERSITY OF

ILLINOIS

Other ADTs

 Some other Abstract Data Types
* Queues (example of FIFO: First-In-First-Out)
* Linked lists

e Trees

e Dictionaries

N ARk

mh
N
" \ , &}g o = |

P 1. - y 4 _f .
ECE 220 - Spring '26 E ILLINOIS

Stack ADT

 Two main operations
« PUSH: add an item to the stack

e POP: remove an item from the stack

()

)
1)

QOO0
10000000000

"V aVaWeWe W,
AVAVAVAVES

(2E000
(

VAV aVaV W W aW VeV
AVAVAVAVAVAVAVAVAY

)
VY
A4

: After two more
A single element After a PUSH PUSHes After a POP

ECE 220 - Spring '26 E ILLINOIS

Stack

e |tis a LIFO (Last-In-First-Out) storage structure
* The (L)ast thing you put (I)n is the (F)irst thing you take (O)ut
* The first thing you put in is the last thing you take out

Together called
stack protocol

* Main operations are: PUSH/POP

* Most implementations also offer:
 PEEK: view top of the stack without popping an element
 Methods to check if stack is ISFULL or ISEMPTY

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Naive implementation

Empty: | YES Empty: NO Empty: NO Empty: NO

x3FEB | . |4=TOP

TOP <—TOP 17 TOP

il
I;
I

arrc | /0000 Y % ZI

o | Y Y

e | 0 s EI Y%

e | oo\ o Y
p—— pres— preS— pres—

lelelele 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Another look at a stack

After one push After two more After two

First pancake (Second pancake) pushes POpS

ECE 220 - Spring '26 E ILLINOIS

Stack

 \What was the difference between the quarter version and the
pancake version?

Pointer moved
TOP :

TOP

TOP

Data moved

ECE 220 - Spring '26 E ILLINOIS

Software implementat

X3FFB | /0 Wz W/

on

< TOP

W4
W4

W

Sl W
X3FFD | 7777

x3FFE //////////
x3FFF | /0000

No longer
accessible
under stack

protocol

il
AEANE

17 1 < TOP

<4 TOP

Pl

R6 x4000 |<TOP

dER: |

R6 x3FFC | R6 R6

Initial state After one push After three pushes After two pops

In this implementation, data do not move in memory.
By convention, R6 holds the top of stack (TOS) pointer.

ECE 220 - Spring '26 ILLINOIS

Stacks in LC3

* By convention in LC3, we will use R6 for TOS
and RO for priming pushes and completing pops.

| x3FFB | 00
 Basic PUSH code:

ADD R6, R6, #-1 ;decrement TOP x3FFC |
STR RO, R6, #0 ;store data
x3FFD | 0

 Basic POP code:
x3FFE //////////
X3FFF | 00000

LDR RO, R6, #0 ;load data
ADD R6, R6, #1 ;increment TOP

Also by convention the stack “grows towards zero”.

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Assume stack as in the previous slide: x3FFB (inclusive) - x4000 (exclusive) are the memory locations.

Stacks in LC3 - Pop

R6 == x4000
YES

 What happens if stack is empty?
Or full?

e Need to detect overflow and RO « value
underflow.

» Use concept of exit code.

e Use R5 to indicate success
(0) or failure (1) of
operations.

ECE 220 - Spring '26 E ILLINOIS

Assume stack as in the previous slide: x3FFB (inclusive) - x4000 (exclusive) are the memory locations.

Stacks in LC3 - Push

R6 == xX3FFB
* What happens if stack is empty? S __YES
Or full?
* Need to detect overflow and
underflow.

» Use concept of exit code.

e Use R5 to indicate success
(0) or failure (1) of
operations.

ECE 220 - Spring '26 E ILLINOIS

Stacks in LC3

POP Routine PUSH Routine

POP AND R5, R5, #0 PUSH AND R5, R5, #0
LD R1, EMPTY LD R1, MAX
ADD R2, R6, Rl ADD R2, R6, Rl
BRz Faillure BRz Faillure
LDR RO, R6, #0 ADD R6, R6, #-1
ADD R6, R6, #1 STR RO, R6, #0
RET RET

Failure ADD R5, R5, #1 Failure ADD R5, R5, #1
RET RET

EMPTY FILL xC000 MAX FILL xC005

s EMPTY <— -x4000 » MAX <-- -X3FFB

Exercise: Modify the above routines to callee save registers we will need.

ECE 220 - Spring '26 E ILLINOIS

A note about convention(s)

* |n the examples, the TOS (top-of-stack pointer) was pointing to
the current top-of-stack.

e This is the convention followed in the textbook.

* Another convention is to have TOS point to the next available
spot.

* You should be able to handle either convention!

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

STACK TOP is at current top of stack

Textbook version

OFFB % |:|
KRG | Y <ToP
oD | % E <ToP
<aFFE | 0 Y
% E E E

S S e N e

Initial state After one push After three pushes After two pops

PUSH: R6 « R6 - 1thenR6 « RO
POP: RO « R6thenR6 « R6 + 1

ECE 220 - Spring '26 ILLINOIS

STACK TOP is at next available spot

Alternate version

x3Fer | =007 | 4= TOP < TOP

Initial state After one push After three pushes After two pops

I

R6

R6

wrre | o0 % 10 <o

% L E E A

% o
EN

PUSH: R6 « ROthenR6 « R6 - 1
POP: R6 « R6 + 1 then RO « R6

ECE 220 - Spring '26 ILLINOIS

Example: palindrome check

 Palindromes are numbers or strings that read the same forward as
well as backward.

 madam, refer, racecar, kayak
e 12/21/33 - 12:21

e Was itacaroracat!| saw?

. 12321 =111°

 How to check if a string is a palindrome?

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

LC3 Exercise/Demo:
Palindrome check

An implementation of the stack PUSH & POP protocols is provided

on Git. Use it to fill in the code to check if the 7-letter string
starting at STRSTART is a palindrome or not.

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Example: balanced parentheses

* Consider a string parsing e When are the parenthesis
algorithm protocol where matched?

. Encountera (,[,{ — push on * No underflow AND

stack e All comparisons v AND
o Stack empty when
 Encountera),], } = po finished parsing
from stack and compare with
popped item

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Example: RPN arithmetic

e Traditional arithmetic notation is called infix notation. Operations
are inserted between operands. E.g. S+ 3 or3 X 4

* Requires use of parenthesis to indicate order of operations

* An alternative notation is called postfix notation a.k.a Reverse
Polish notation (RPN). E.g. 53+ or 34 X

* |Implemented properly, does not require parenthesis/brackets

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Practice RPN - MP2 maternal

e Note: 53 — > 5—3
e Consider: 34*7 2 —3%4
e \What does it evaluate to?

e What is the infix version of the above?

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

