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Recap

 [ast week, we talked about
» Keyboard/Display polling and handshaking
* Subroutines & TRAP mechanism
» Callee and caller save conventions

e TRAP’s RTI uses a different mechanism than RET / JMP R7

* The mechanism is called stack - an Abstract Data Type

 Reminders:
« MP1 is due Thursday. Make use of office hours!

e Can sign up to take mock quiz at CBTF now!
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MP 1- Letter frequency decomposition

« Common practice in programming to decompose a task into
smaller subtasks

 \What did we learn that can help us do this?

* The task:
* Given an ASCII string (terminated by NUL)
 Count the occurrences of each letter (regardless of case), and
 The number of non-alphabetic characters, and

* Print out a histogram
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MP 1- Letter frequency decomposition

YES Print
Histogram
* Printing histogram

\ Increment Which bin to increment?

e Divide into two tasks

 Counting a character

bin

Can only do this after checking entire string.
When is string done? — NUL Increment

counter
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http://xahlee.info/comp/unicode_arrows.html

MP 1- Letter frequency decomposition

 Which bin to increment?

 Need to determine if character is alphabetic or non-alphabetic.

M-Mﬂ-ﬂﬂ-ﬂﬂ--

NUL DEL

Increment Yle M Count char
bin (1 ) > (4 )
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MP 1- Letter frequency decomposition

 Which bin to increment?

 Need to determine if character is alphabetic or non-alphabetic.

o | Lo [ | a0 o | 3] e

Count char Increment e MR Count char
> ‘A alpha A > ‘Z’
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MP 1- Letter frequency decomposition

 Which bin to increment?

 Need to determine if character is alphabetic or non-alphabetic.

M-Mﬂ-ﬂﬂ-ﬂﬂ--

NUL DEL

s Count char
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MP 1- Letter frequency decomposition

 Which bin to increment?

 Need to determine if character is alphabetic or non-alphabetic.

o | Lo [ | a0 o | 3] e

Count char Increment o INCIEment
> ‘a’ alpha ‘'z’ non-alpha
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MP 1- Letter frequency decomposition

 What about initialization etc”? We need to do three things:
* fill the histogram with Os,

* |oad any useful values (such as ASCII characters to check the
region boundaries)

e and point to the start of the string

 How to increment alpha — see MP (code already provided)
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http://xahlee.info/comp/unicode_arrows.html

MP 1- Letter frequency decomposition

NO Print
Histogram Code you need to write
Is this part.

NO

Increment
alpha

Increment
counter
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Lesson Objectives

 Understand and explain the concept of an “Abstract Data Type”
with examples.

 Understand the Stack ADT conceptually as LIFO/FILO
 Understand the stack protocol & TOS conventions
* Implement the stack protocol in LC3 using subroutines

 Understand and explain simple uses of Stack ADT with examples
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Abstract Data Types

» Abstract Data Type (ADT) refers to a model for a data type that
combines the logical description of how data is viewed and the

operations that are allowed on it without regard to how they will be
implemented.

» Example: Integers as an ADT are zero, the natural numbers and
their additive inverses with the usual operations of addition,
multiplication, subtraction, etc. However, on a computer they
may be implemented as 2’s complements, IEEE 754, etc.
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Other ADTs

 Some other Abstract Data Types
* Queues (example of FIFO: First-In-First-Out)
* Linked lists

e Trees

e Dictionaries
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Stack ADT

 Two main operations
« PUSH: add an item to the stack

e POP: remove an item from the stack
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: After two more
A single element After a PUSH PUSHes After a POP
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Stack

e |tis a LIFO (Last-In-First-Out) storage structure
* The (L)ast thing you put (I)n is the (F)irst thing you take (O)ut
* The first thing you put in is the last thing you take out

Together called
stack protocol

* Main operations are: PUSH/POP

* Most implementations also offer:
 PEEK: view top of the stack without popping an element
 Methods to check if stack is ISFULL or ISEMPTY
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Naive implementation

Empty: | YES Empty: NO Empty: NO Empty: NO

x3FEB | . |4=TOP

TOP <—TOP 17 TOP

il
I;
I

arrc | /0000 Y % ZI

o | Y Y

e | 0 s EI Y%

e | oo\ o Y
p—— pres— preS— pres—
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Another look at a stack

After one push After two more After two

First pancake (Second pancake) pushes POpS
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Stack

 \What was the difference between the quarter version and the
pancake version?

Pointer moved
TOP :

TOP

TOP

Data moved
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Software implementat

X3FFB | /0 Wz W/

on

< TOP

W4
W4

W

Sl W
X3FFD | 7777

x3FFE //////////
x3FFF | /0000

No longer
accessible
under stack

protocol

il
AEANE

17 1 < TOP

<4 TOP

Pl

R6 x4000 |<TOP

dER: |

R6 x3FFC | R6 R6

Initial state After one push After three pushes After two pops

In this implementation, data do not move in memory.
By convention, R6 holds the top of stack (TOS) pointer.
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Stacks in LC3

* By convention in LC3, we will use R6 for TOS
and RO for priming pushes and completing pops.

| x3FFB | 00
 Basic PUSH code:

ADD R6, R6, #-1 ;decrement TOP x3FFC |
STR RO, R6, #0 ;store data
x3FFD | 0

 Basic POP code:
x3FFE //////////
X3FFF | 00000

LDR RO, R6, #0 ;load data
ADD R6, R6, #1 ;increment TOP

Also by convention the stack “grows towards zero”.
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Assume stack as in the previous slide: x3FFB (inclusive) - x4000 (exclusive) are the memory locations.

Stacks in LC3 - Pop

R6 == x4000
YES

 What happens if stack is empty?
Or full?

e Need to detect overflow and RO « value
underflow.

» Use concept of exit code.

e Use R5 to indicate success
(0) or failure (1) of
operations.
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Assume stack as in the previous slide: x3FFB (inclusive) - x4000 (exclusive) are the memory locations.

Stacks in LC3 - Push

R6 == xX3FFB
* What happens if stack is empty? S __YES
Or full?
* Need to detect overflow and
underflow.

» Use concept of exit code.

e Use R5 to indicate success
(0) or failure (1) of
operations.
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Stacks in LC3

POP Routine PUSH Routine

POP AND R5, R5, #0 PUSH AND R5, R5, #0
LD R1, EMPTY LD R1, MAX
ADD R2, R6, Rl ADD R2, R6, Rl
BRz Faillure BRz Faillure
LDR RO, R6, #0 ADD R6, R6, #-1
ADD R6, R6, #1 STR RO, R6, #0
RET RET

Failure ADD R5, R5, #1 Failure ADD R5, R5, #1
RET RET

EMPTY FILL xC000 MAX FILL xC005

s EMPTY <— -x4000 » MAX <-- -X3FFB

Exercise: Modify the above routines to callee save registers we will need.
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A note about convention(s)

* |n the examples, the TOS (top-of-stack pointer) was pointing to
the current top-of-stack.

e This is the convention followed in the textbook.

* Another convention is to have TOS point to the next available
spot.

* You should be able to handle either convention!
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STACK TOP is at current top of stack

Textbook version

OFFB % |:|
KRG | Y <ToP
oD | % E <ToP
<aFFE | 0 Y
% E E E

S S e N e

Initial state After one push After three pushes After two pops

PUSH: R6 « R6 - 1thenR6 « RO
POP: RO « R6thenR6 « R6 + 1
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STACK TOP is at next available spot

Alternate version

x3Fer | =007 | 4= TOP < TOP

Initial state After one push After three pushes After two pops

I

R6

R6

wrre | o0 % 10 <o

% L E E A

% o
EN

PUSH: R6 « ROthenR6 « R6 - 1
POP: R6 « R6 + 1 then RO « R6
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Example: palindrome check

 Palindromes are numbers or strings that read the same forward as
well as backward.

 madam, refer, racecar, kayak
e 12/21/33 - 12:21

e Was itacaroracat!| saw?

. 12321 =111°

 How to check if a string is a palindrome?
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LC3 Exercise/Demo:
Palindrome check

An implementation of the stack PUSH & POP protocols is provided

on Git. Use it to fill in the code to check if the 7-letter string
starting at STRSTART is a palindrome or not.
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Example: balanced parentheses

* Consider a string parsing e When are the parenthesis
algorithm protocol where matched?

. Encountera (,[,{ — push on * No underflow AND

stack e All comparisons v AND
o Stack empty when
 Encountera),], } = po finished parsing
from stack and compare with
popped item
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Example: RPN arithmetic

e Traditional arithmetic notation is called infix notation. Operations
are inserted between operands. E.g. S+ 3 or3 X 4

* Requires use of parenthesis to indicate order of operations

* An alternative notation is called postfix notation a.k.a Reverse
Polish notation (RPN). E.g. 53+ or 34 X

* |Implemented properly, does not require parenthesis/brackets
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Practice RPN - MP2 maternal

e Note: 53 — > 5—3
e Consider: 34*7 2 —3%4
e \What does it evaluate to?

e What is the infix version of the above?
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