
ECE 220 - Spring '26 Dr. Ivan Abraham

ECE 220
Lecture x0002 - 01/22

TRAPs & Subroutines

Slides based on material by: Yuting Chen, Yih-Chun Hu & Ujjal Bhowmik

 ECE 220 - Spring '26 Dr. Ivan Abraham

Recap

￼2

• Wrote a program to display
“ECE 220 is fun!” to the
console. We used the
pseudo-op .STRINGZ to
store string to memory.
Avoided using TRAP codes.

.ORIG x3000
; Load start address of string
LEA R2, MY_STRING

; Set up loop to load char into R0
CHRLOOP LDR R0, R2, #0

;Break if all done
BRz ALLDONE

;Loop to poll display until ready
DPOLL

LDI R1, DSR
BRzp DPOLL

;Store value in R0 to DDR
STI R0, DDR

;Move onto next char
ADD R2, R2, #1

BRnzp CHRLOOP

ALLDONE HALT

DSR .FILL xFE04
DDR .FILL xFE06

MY_STRING .STRINGZ "ECE 220 IS FUN"
.END

ECE 220 - Spring '26 Dr. Ivan Abraham

Recap from last time
• Consider “echo” routine:

￼3

KPOLL LDI R1, KBSR
 BRzp KPOLL
 LDI R0, KBDR

DPOLL LDI R1, DSR
 BRzp DPOLL
 STI R0, DDR

 BRnzp NEXT_TASK
KBSR .FILL xFE00
KBDR .FILL xFE02
DSR .FILL xFE04
DDR .FILL xFE06

• Reading & writing from
keyboard or display is common
task

• Inefficient to keep repeating
this code

• Need to free up R1 and R0
for use whenever blocks run

• Save/restore current
values before/after these
blocks run

ECE 220 - Spring '26 Dr. Ivan Abraham

Recap from last time
• Consider “echo” routine:

￼4

;SAVE R0, R1
KPOLL LDI R1, KBSR
 BRzp KPOLL
 LDI R0, KBDR
;RESTORE R0, R1

;SAVE R0, R1
DPOLL LDI R1, DSR
 BRzp DPOLL
 STI R0, DDR
;RESTORE R0, R1

 BRnzp NEXT_TASK
KBSR .FILL xFE00
KBDR .FILL xFE02
DSR .FILL xFE04
DDR .FILL xFE06

• Reading & writing from
keyboard or display is common
task

• Inefficient to keep repeating
this code

• Need to free up R1 and R0
for use whenever blocks run

• Save/restore current
values before/after these
blocks run

ECE 220 - Spring '26 Dr. Ivan Abraham

Repeating code
• Consider ￼

• Evaluate ￼

• How many multiplications?

• Suppose we wish to evaluate ￼ for many values of ￼

• Why? E.g. Newton-Raphson method for finding roots of ￼

f(x) = x4 + 4x3 + 3x2 + 2x + 1

f (2)

f(x) x

f(x)

￼5

https://en.wikipedia.org/wiki/Newton's_method

ECE 220 - Spring '26 Dr. Ivan Abraham

Aside: NR method
Suppose ￼ such that ￼ and ￼ is well defined. Let ￼
be an initial guess for some root ￼ of ￼ . Then the iterates ￼

f(x) x, f(x) ∈ ℝ f′￼(x) x0
x̄ f(x) xn

￼6

More multiplications!

successively improve on the guess ￼ as an approximation to ￼
(roughly doubling the number of correct digits at each step).

x0 x̄

￼ and ￼x1 = x0 −
f(x)

f′￼(x0)
xn+1 = xn −

f(xn)
f′￼(xn)

Note: Information in “Asides” are not exam material but rather for your intellectual edification.

ECE 220 - Spring '26 Dr. Ivan Abraham

Lesson objectives
• Understand and articulate need for subroutines (or functions)

• Understand callee-save and caller-save notions for saving
registers

• Be able to write subroutines in LC3 assembly

• Understand return-linkage mechanism

• Understand difference between user-written subroutines and
TRAPs

￼7

ECE 220 - Spring '26 Dr. Ivan Abraham

Subroutines
• Subroutines are blocks/pieces of code that do something specific.

Examples:

• Multiply two numbers

• Sort a list of integers

• Read keyboard press into a register

• Often called functions, methods, procedures, service calls, etc.

• Different from functions in mathematics or functional
programming languages!

￼8

ECE 220 - Spring '26 Dr. Ivan Abraham

Functions vs. subroutines
• In mathematics, a function ￼ takes a value from a set and

returns a value in a(nother) set. If you call ￼ with some particular
value ￼ then it always returns ￼ .

• In CS/programming, a function foo is a piece of code that can be
called, perhaps with inputs, and does some stuff and maybe
returns something.

• In functional languages (in theory at least), you can replace a
function call with its return value and nothing should break.

f(x)
f

x0 f(x0)

￼9

https://en.wikipedia.org/wiki/Functional_programming#Referential_transparency
https://en.wikipedia.org/wiki/Functional_programming#Referential_transparency

ECE 220 - Spring '26 Dr. Ivan Abraham

Subroutines

￼10

Figure 8.2 - P&P 3rd Ed.

• User invokes or calls
subroutine

• Subroutine code performs
operation / task

• Returns control to user
program with no other
unexpected changes

ECE 220 - Spring '26 Dr. Ivan Abraham

Subroutines in LC3
• Recall instructions that change

program flow

• Subroutines make use of the
JSR(R) and RET commands.

• What is/are the difference(s)
between BR/JMP and JSR/
JSRR?

￼11

Figure “A.2” - P&P 3rd Ed.

ECE 220 - Spring '26 Dr. Ivan Abraham

RET & JMP

• JMP & RET are relatives; op-
code is the same

• JMP: PC ← BaseR

• RET: PC ← R7

￼12

ECE 220 - Spring '26 Dr. Ivan Abraham

JSR & JSRR
• When JSR(R) is encountered R7 is

loaded with PC+ and then PC is set in
one of two ways:

• JSR and JSRR differ in addressing
modes (signified by bit #11).

• PC ← PC + SEXT(PCoffset11)

• PC ← BaseR

• After subroutine ends, RET is used to
return to caller

￼13

Appendix A, P&P 3rd Ed.

+ Recall PC is incremented after FETCH.

ECE 220 - Spring '26 Dr. Ivan Abraham

Using subroutines

￼14

Saving & restoring registers
• To use a subroutine the user must know:

• It’s address (or label)

• It’s arguments (where to pass in data, if any)

• It’s return values (where to put computed data, if any)

• What it does 🙄

• Maybe not all the gory details but definitely registers it may
use or overwrite!

ECE 220 - Spring '26 Dr. Ivan Abraham

Using subroutines

￼15

Saving & restoring registers
Generally we have two strategies depending on who saves/restores
registers:

• Caller-saved: Onus on user to save/restore registers that will be needed
later; may not know what registers subroutine will use

• User saves/restore registers they will need (or know could get
destroyed)

• Callee-saved: Subroutine knows registers it will alter/use, but cannot
know what the user will need later

• Subroutine saves/restores registers it will use

ECE 220 - Spring '26 Dr. Ivan Abraham

Using subroutines

￼16

Saving & restoring registers

Good practices:

• Keep R7 unused, especially for nested subroutines

• Use callee-save, except for return values (should be caller
saved)

• Restore incoming arguments to their original values unless
intended to be overwritten by return value

ECE 220 - Spring '26 Dr. Ivan Abraham

Example

￼17

Multiplication

; LC3 subroutine to multiply two numbers
; Inputs: R0 (multiplicand), R1 (multiplier)
; Output: R2 (result)

MULTIPLY:
 ST R0, MulSaveR0 ; Callee save registers
 ST R1, MulSaveR1
 AND R2, R2, #0 ; Clear R2 to be used as result
 ADD R2, R0, #0 ; Load multiplicand into R2
 ADD R1, R1, #-1 ; Use R1 as counter

MUL_LOOP:
 BRz MUL_DONE ; If R1 == 0, multiplication done
 ADD R2, R0, R2
 ADD R1, R1, #-1 ; Decrement the counter in R1
 BR MUL_LOOP ; Jump back to MUL_LOOP

MUL_DONE:
 LD R0, MulSaveR0 ; Restore registers
 LD R1, MulSaveR1
 RET ; Return from the subroutine

Try to complete
MULTIPLY
subroutine by
filling in the
missing piece.

Driver code is on Github.
This snippet doesn’t
show .ORIG, .END or

label definitions!

ECE 220 - Spring '26 Dr. Ivan Abraham

Exercise

￼18

Exponentiation

; LC3 subroutine to that performs exponentiation
; Inputs: R0 (base), R1 (exponent)
; Loop counter: R2
; Output: R2 (result)
; POW knows it should call MULTIPLY and it knows
; MULTIPLY overwrites the value in R2

POW:
 ST R0, PowSaveR0 ; Callee save registers
 ST R1, PowSaveR1
 ADD R2, R1, #-1 ; Initialize counter
 ; Why can't we use R1 as counter?
 ADD R1, R0, #0 ; Set up to call MULTIPLY

POW_LOOP:
 BRz POW_DONE ; If R2==0, loop complete
 ST R2, PowSaveR2 ; Caller save
 JSR MULTIPLY ; Result in R2
 ADD R1, R2, #0 ; Copy result for next multiply
 LD R2, PowSaveR2 ; Caller restore
 ADD R2, R2, #-1 ; Decrement counter
 BR POW_LOOP

POW_DONE:
 ADD R2, R1, #0 ; Move result
 LD R0, PowSaveR0 ; Callee restore
 LD R1, PowSaveR1
 RET

Use the
MULTIPLY
subroutine in
the previous
slide to write
an LC3
subroutine that
performs
exponentiation.

; LC3 subroutine to multiply two numbers
; Inputs: R0 (multiplicand), R1 (multiplier)
; Output: R2 (result)

MULTIPLY:

ECE 220 - Spring '26 Dr. Ivan Abraham

Exercise

￼19

Exponentiation

; LC3 subroutine to that performs exponentiation
; Inputs: R0 (base), R1 (exponent)
; Loop counter: R2
; Output: R2 (result)
; POW knows it should call MULTIPLY and it knows
; MULTIPLY overwrites the value in R2

POW:
 ST R0, PowSaveR0 ; Callee save registers
 ST R1, PowSaveR1
 ADD R2, R1, #-1 ; Initialize counter
 ; Why can't we use R1 as counter?
 ADD R1, R0, #0 ; Set up to call MULTIPLY

POW_LOOP:
 BRz POW_DONE ; If R2==0, loop complete
 ST R2, PowSaveR2 ; Caller save
 JSR MULTIPLY ; Result in R2
 ADD R1, R2, #0 ; Copy result for JSR to multiply
 LD R2, PowSaveR2 ; Caller restore
 ADD R2, R2, #-1 ; Decrement counter
 BR POW_LOOP

POW_DONE:
 ADD R2, R1, #0 ; Move result to R2
 LD R0, PowSaveR0 ; Callee restore
 LD R1, PowSaveR1
 RET

Use the
MULTIPLY
subroutine in
the previous
slide to write
an LC3
subroutine that
performs
exponentiation.

Will this program halt?
Why? Why not?

ECE 220 - Spring '26 Dr. Ivan Abraham

User routine vs. service routine
• Consider keyboard input:

• It’s used often and has too many specific details for most
programmers

• Improper usage could breach security of the system or mess up
keyboard usage for other users/programs

• Solution: make this part of the OS

• User program → invokes service routine (a.k.a OS call) → OS
performs operation → returns control to user program

￼20

ECE 220 - Spring '26 Dr. Ivan Abraham

TRAP mechanism

￼21

System calls in LC3 are achieved
using the TRAP mechanism

Figure A.1 - P&P 3rd Ed.

ECE 220 - Spring '26 Dr. Ivan Abraham

TRAP mechanism

￼22

Vector Symbol Routine
x20 GETC Read a single character (no echo)

x21 OUT Output character to monitor
x22
 PUTS Write a string to monitor
x23 IN Print prompt to monitor, read and echo character from keyboard
x24 PUTSP Write a string to monitor, two characters per memory location
x25 HALT Halt program
x26 Write a number to monitor (undocumented)

Table A.3 of P&P 3rd Ed.

Exercise at home: Try using each of these!

ECE 220 - Spring '26 Dr. Ivan Abraham

TRAP: Flow Control
• Slight difference

between editions of the
textbook

• Edition 2: Last
statement in TRAP is
JMP R7 (i.e. RET)

• Edition 3: Last
statement is RTI

￼23

Figure 9.11 In P&P 3rd Ed.

ECE 220 - Spring '26 Dr. Ivan Abraham

TRAP Mechanism: 2nd Ed.
• MAR ← ZEXT(trapvect8)

• MDR ← MEM[MAR]

• R7 ← PC

• PC ← MDR

• ….

• JMP R7

￼24

ECE 220 - Spring '26 Dr. Ivan Abraham

TRAP example

￼25

.ORIG x3000

AND R0, R0, #0 ;init R0
ADD R0, R0, #3 ;set R0 to 3
ADD R7, R0, #4 ;set R7 to 7
ADD R0, R0, #1 ;increment R0
ADD R7, R7, #1 ;increment R7

IN ;same as ‘TRAP x23’

ADD R0, R0, #1 ;increment R0
ADD R7, R7, #0 ;increment R7

HALT
.END

• What are the values in R0
and R7 right before IN?

• How about right before
HALT?

ECE 220 - Spring '26 Dr. Ivan Abraham

• 2nd edition: LC3 will
overwrite R7

• 3rd edition: R7 will be
left unchanged.

• Mechanism? Uses
stacks → next
lecture.

RTI: Return from TRAP/Interrupt

￼26

Figure “A.2” - P&P 3rd Ed.

Which one
does EWS use?

http://xahlee.info/comp/unicode_arrows.html

ECE 220 - Spring '26 Dr. Ivan Abraham

TRAP vs. subroutines
• Service routines (TRAP) provide 3 main functions

• Shield programmers from system-specific details (KBDR, KBSR, etc.)

• Write frequently-used code just once

• Protect system recourses from malicious/clumsy programmers

• Subroutines provide the same functions for non-system (user) code

• Lives in user space

• Performs a well-defined task

• Is invoked (called) by another user program

• Returns control to the calling program when finished

￼27

