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Recap

￼2

• Wrote a program to display 
“ECE 220 is fun!” to the 
console. We used the 
pseudo-op .STRINGZ to 
store string to memory. 
Avoided using TRAP codes. 

.ORIG x3000
; Load start address of string
LEA R2, MY_STRING

; Set up loop to load char into R0
CHRLOOP LDR R0, R2, #0

;Break if all done
BRz ALLDONE

;Loop to poll display until ready
DPOLL 

LDI R1, DSR
BRzp DPOLL

;Store value in R0 to DDR 
STI R0, DDR

;Move onto next char
ADD R2, R2, #1

BRnzp CHRLOOP

ALLDONE HALT

DSR .FILL xFE04
DDR .FILL xFE06

MY_STRING .STRINGZ "ECE 220 IS FUN"
.END
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Recap from last time
• Consider “echo” routine:

￼3

KPOLL  LDI     R1, KBSR
       BRzp    KPOLL
       LDI     R0, KBDR

DPOLL  LDI     R1, DSR
       BRzp    DPOLL
       STI     R0, DDR

       BRnzp   NEXT_TASK
KBSR   .FILL   xFE00
KBDR   .FILL   xFE02
DSR    .FILL   xFE04
DDR    .FILL   xFE06

• Reading & writing from 
keyboard or display is common 
task


• Inefficient to keep repeating 
this code 


• Need to free up R1 and R0 
for use whenever blocks run 


• Save/restore current 
values before/after these 
blocks run 



ECE 220 - Spring '26 Dr. Ivan Abraham

Recap from last time
• Consider “echo” routine:
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;SAVE R0, R1
KPOLL  LDI     R1, KBSR
       BRzp    KPOLL
       LDI     R0, KBDR
;RESTORE R0, R1

;SAVE R0, R1
DPOLL  LDI     R1, DSR
       BRzp    DPOLL
       STI     R0, DDR
;RESTORE R0, R1

       BRnzp   NEXT_TASK
KBSR   .FILL   xFE00
KBDR   .FILL   xFE02
DSR    .FILL   xFE04
DDR    .FILL   xFE06

• Reading & writing from 
keyboard or display is common 
task


• Inefficient to keep repeating 
this code 


• Need to free up R1 and R0 
for use whenever blocks run 


• Save/restore current 
values before/after these 
blocks run 
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Repeating code
• Consider ￼ 


• Evaluate ￼ 


• How many multiplications? 


• Suppose we wish to evaluate ￼  for many values of ￼ 


• Why? E.g. Newton-Raphson method for finding roots of ￼

f(x) = x4 + 4x3 + 3x2 + 2x + 1

f (2)

f(x) x

f(x)

￼5

https://en.wikipedia.org/wiki/Newton's_method
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Aside: NR method
Suppose ￼  such that ￼  and ￼  is well defined. Let ￼  
be an initial guess for some root ￼  of ￼ . Then the iterates ￼ 


f(x) x, f(x) ∈ ℝ f′￼(x) x0
x̄ f(x) xn

￼6

More multiplications!

successively improve on the guess ￼  as an approximation to ￼  
(roughly doubling the number of correct digits at each step). 

x0 x̄

￼   and  ￼x1 = x0 −
f(x)

f′￼(x0)
xn+1 = xn −

f(xn)
f′￼(xn)

Note: Information in “Asides” are not exam material but rather for your intellectual edification. 
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Lesson objectives
• Understand and articulate need for subroutines (or functions)


• Understand callee-save and caller-save notions for saving 
registers


• Be able to write subroutines in LC3 assembly


• Understand return-linkage mechanism


• Understand difference between user-written subroutines and 
TRAPs 

￼7
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Subroutines
• Subroutines are blocks/pieces of code that do something specific. 

Examples:

• Multiply two numbers 

• Sort a list of integers 

• Read keyboard press into a register


• Often called functions, methods, procedures, service calls, etc. 


• Different from functions in mathematics or functional 
programming languages!

￼8
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Functions vs. subroutines
• In mathematics, a function ￼  takes a value from a set and 

returns a value in a(nother) set. If you call ￼ with some particular 
value ￼  then it always returns ￼ . 


• In CS/programming, a function foo is a piece of code that can be 
called, perhaps with inputs, and does some stuff and maybe 
returns something. 


• In functional languages (in theory at least), you can replace a 
function call with its return value and nothing should break.  

f(x)
f

x0 f(x0)

￼9

https://en.wikipedia.org/wiki/Functional_programming#Referential_transparency
https://en.wikipedia.org/wiki/Functional_programming#Referential_transparency
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Subroutines

￼10

Figure 8.2 - P&P 3rd Ed. 

• User invokes or calls 
subroutine


• Subroutine code performs 
operation / task


• Returns control to user 
program with no other 
unexpected changes 
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Subroutines in LC3
• Recall instructions that change 

program flow 


• Subroutines make use of the 
JSR(R) and RET commands.


• What is/are the difference(s) 
between BR/JMP and JSR/
JSRR?

￼11

Figure “A.2” - P&P 3rd Ed.
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RET & JMP

• JMP & RET are relatives; op-
code is the same 


• JMP: PC ← BaseR

• RET: PC ← R7

￼12
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JSR & JSRR
• When JSR(R) is encountered R7 is 

loaded with PC+ and then PC is set in 
one of two ways:


• JSR and JSRR differ in addressing 
modes (signified by bit #11). 


• PC ← PC + SEXT(PCoffset11)


• PC ← BaseR 


• After subroutine ends, RET is used to 
return to caller

￼13

Appendix A, P&P 3rd Ed. 

+ Recall PC is incremented after FETCH.
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Using subroutines

￼14

Saving & restoring registers
• To use a subroutine the user must know:


• It’s address (or label)


• It’s arguments (where to pass in data, if any)


• It’s return values (where to put computed data, if any)


• What it does 🙄


• Maybe not all the gory details but definitely registers it may 
use or overwrite!
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Using subroutines

￼15

Saving & restoring registers
Generally we have two strategies depending on who saves/restores 
registers:


• Caller-saved: Onus on user to save/restore registers that will be needed 
later; may not know what registers subroutine will use


• User saves/restore registers they will need (or know could get 
destroyed)


• Callee-saved: Subroutine knows registers it will alter/use, but cannot 
know what the user will need later


• Subroutine saves/restores registers it will use
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Using subroutines

￼16

Saving & restoring registers

Good practices:


• Keep R7 unused, especially for nested subroutines


• Use callee-save, except for return values (should be caller 
saved)


• Restore incoming arguments to their original values unless 
intended to be overwritten by return value
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Example
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Multiplication

; LC3 subroutine to multiply two numbers
; Inputs: R0 (multiplicand), R1 (multiplier)
; Output:  R2 (result)

MULTIPLY:
    ST R0, MulSaveR0        ; Callee save registers
    ST R1, MulSaveR1       
    AND R2, R2, #0          ; Clear R2 to be used as result
    ADD R2, R0, #0          ; Load multiplicand into R2
    ADD R1, R1, #-1         ; Use R1 as counter
   
MUL_LOOP:
    BRz MUL_DONE            ; If R1 == 0, multiplication done
    ADD R2, R0, R2
    ADD R1, R1, #-1         ; Decrement the counter in R1
    BR MUL_LOOP             ; Jump back to MUL_LOOP

MUL_DONE:
    LD R0, MulSaveR0        ; Restore registers
    LD R1, MulSaveR1
    RET                     ; Return from the subroutine

Try to complete 
MULTIPLY 
subroutine by 
filling in the 
missing piece. 

Driver code is on Github. 
This snippet doesn’t 
show .ORIG, .END or 

label definitions!
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Exercise

￼18

Exponentiation

; LC3 subroutine to that performs exponentiation
; Inputs: R0 (base), R1 (exponent)
; Loop counter: R2
; Output: R2 (result)
; POW knows it should call MULTIPLY and it knows
; MULTIPLY overwrites the value in R2

POW: 
    ST R0, PowSaveR0    ; Callee save registers
    ST R1, PowSaveR1
    ADD R2, R1, #-1     ; Initialize counter
                        ; Why can't we use R1 as counter?
    ADD R1, R0, #0      ; Set up to call MULTIPLY
    
POW_LOOP:
    BRz POW_DONE        ; If R2==0, loop complete
    ST R2, PowSaveR2    ; Caller save
    JSR MULTIPLY        ; Result in R2
    ADD R1, R2, #0      ; Copy result for next multiply
    LD R2, PowSaveR2    ; Caller restore
    ADD R2, R2, #-1     ; Decrement counter 
    BR POW_LOOP
    
POW_DONE:
    ADD R2, R1, #0      ; Move result 
    LD R0, PowSaveR0    ; Callee restore
    LD R1, PowSaveR1
    RET

Use the 
MULTIPLY 
subroutine in 
the previous 
slide to write 
an LC3 
subroutine that 
performs 
exponentiation.

; LC3 subroutine to multiply two numbers
; Inputs: R0 (multiplicand), R1 (multiplier)
; Output:  R2 (result)

MULTIPLY:
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Exercise

￼19

Exponentiation

; LC3 subroutine to that performs exponentiation
; Inputs: R0 (base), R1 (exponent)
; Loop counter: R2
; Output: R2 (result)
; POW knows it should call MULTIPLY and it knows
; MULTIPLY overwrites the value in R2

POW: 
    ST R0, PowSaveR0    ; Callee save registers
    ST R1, PowSaveR1
    ADD R2, R1, #-1     ; Initialize counter
                        ; Why can't we use R1 as counter?
    ADD R1, R0, #0      ; Set up to call MULTIPLY
    
POW_LOOP:
    BRz POW_DONE        ; If R2==0, loop complete
    ST R2, PowSaveR2    ; Caller save
    JSR MULTIPLY        ; Result in R2
    ADD R1, R2, #0      ; Copy result for JSR to multiply
    LD R2, PowSaveR2    ; Caller restore
    ADD R2, R2, #-1     ; Decrement counter 
    BR POW_LOOP
    
POW_DONE:
    ADD R2, R1, #0      ; Move result to R2
    LD R0, PowSaveR0    ; Callee restore
    LD R1, PowSaveR1
    RET

Use the 
MULTIPLY 
subroutine in 
the previous 
slide to write 
an LC3 
subroutine that 
performs 
exponentiation.

Will this program halt? 
Why? Why not?
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User routine vs. service routine
• Consider keyboard input:


• It’s used often and has too many specific details for most 
programmers 


• Improper usage could breach security of the system or mess up 
keyboard usage for other users/programs


• Solution: make this part of the OS


• User program → invokes service routine (a.k.a OS call) → OS 
performs operation → returns control to user program 

￼20
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TRAP mechanism

￼21

System calls in LC3 are achieved 
using the TRAP mechanism 

Figure A.1 - P&P 3rd Ed.
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TRAP mechanism

￼22

Vector Symbol Routine
x20 GETC Read a single character (no echo)

x21 OUT Output character to monitor
x22
 PUTS Write a string to monitor
x23 IN Print prompt to monitor, read and echo character from keyboard
x24 PUTSP Write a string to monitor, two characters per memory location
x25 HALT Halt program 
x26 Write a number to monitor (undocumented)

Table A.3 of P&P 3rd Ed. 

Exercise at home: Try using each of these!
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TRAP: Flow Control
• Slight difference 

between editions of the 
textbook


• Edition 2: Last 
statement in TRAP is 
JMP R7 (i.e. RET)


• Edition 3: Last 
statement is RTI

￼23

Figure 9.11 In P&P 3rd Ed. 
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TRAP Mechanism: 2nd Ed.
• MAR ← ZEXT(trapvect8)

• MDR ← MEM[MAR]

• R7 ← PC

• PC ← MDR

• ….


• JMP R7

￼24
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TRAP example

￼25

.ORIG x3000

AND R0, R0, #0         ;init R0
ADD R0, R0, #3         ;set R0 to 3
ADD R7, R0, #4         ;set R7 to 7
ADD R0, R0, #1         ;increment R0
ADD R7, R7, #1         ;increment R7
   
IN                     ;same as ‘TRAP x23’

ADD R0, R0, #1         ;increment R0
ADD R7, R7, #0         ;increment R7

HALT
.END

• What are the values in R0 
and R7 right before IN?


• How about right before 
HALT?
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• 2nd edition: LC3 will 
overwrite R7


• 3rd edition: R7 will be 
left unchanged. 


• Mechanism?  Uses 
stacks → next 
lecture.

RTI: Return from TRAP/Interrupt

￼26

Figure “A.2” - P&P 3rd Ed.

Which one 
does EWS use?

http://xahlee.info/comp/unicode_arrows.html
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TRAP vs. subroutines
• Service routines (TRAP) provide 3 main functions


• Shield programmers from system-specific details (KBDR, KBSR, etc.)


• Write frequently-used code just once


• Protect system recourses from malicious/clumsy programmers 


• Subroutines provide the same functions for non-system (user) code


• Lives in user space


• Performs a well-defined task


• Is invoked (called) by another user program


• Returns control to the calling program when finished 

￼27


