ECE 220

Lecture x0002 - 01/22
TRAPs & Subroutines

Slides based on material by: Yuting Chen, Yih-Chun Hu & Ujjal Bhowmik

ECE 220 - Spring '26 ILLINOIS

.ORIG x3000
eca ; Load start address of string
LEA R2, MY STRING

; Set up loop to load char into RO
CHRLOOP LDR RO, R2, #O0

 Wrote a program to display jBreak if all done
(c . . BRz ALLDONE
ECE 220 is fun!” to the | |
;Loop to poll display until ready
console. We used the DPOLL
LDI R1, DSR
pseudo-op .STRINGZ to BRzp DPOLL
. sStore value i1n RO to DDR
store string to memory. STI RO, DDR
AVOlded US|ng TRAP COdeS ;Move onto next char

ADD R2, R2, #1
BRnzp CHRLOOP
ALLDONE HALT

DSR .FILL xXFEO04
DDR .FILL XFEOQ06

MY STRING .STRINGZ "ECE 220 IS FUN"
.END

UNIVERSITY

ECE 220 - Spring '26 ILLINO

OF
IS
s

L

Recap from last time

* Consider “echo” routine: » Reading & writing from

KPOLL LDI R, KBSR keyboard or display is common
BRzp KPOLL task

LDI RO, KBDR

* |nefficient to keep repeating

this code
DPOLL LDI R1, DSR
BR DPOLL
st RO, DDR e Need to free up R1 and RO

for use whenever blocks run

vt e S Save/restore current

KBDR .FILL XFE02 values before/after these
DSR FILI XFEQ4

DDR .FILL xFE06 blocks run

IIIIII 'ERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

Recap from last time

* Consider “echo” routine: » Reading & writing from
"SAVE RO, R1 keyboard or display is common
KPOLL LDI R1, KBSR task
BRzp KPOLL
0, . .
msrone w0, T « Inefficient to keep repeating
this code
N Need to free up R1 and RO
BRzp for use whenever blocks run

STI
:RESTORE RO,

e Save/restore current

BRnzp NEXT_TASK values before/after these
KBSR FILIL XFEOQOO
KBDR .FILL xFEO02 blocks run
DSR FILIL XFEQ4
DDR FILI, XFEQO6

ECE 220 - Sprina '26 1L ILLINOIS

Repeating code

Ad
A

. Consider f(x) = x* +4x> + 3x* + 2x + 1

 Evaluate f(2)

 How many multiplications?

ol
- - l “ l - — Tangenle

» Suppose we wish to evaluate f(x) for many values of x

« Why? E.g. Newton-Raphson method for finding roots of f(x)

IIIIII 'ERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

https://en.wikipedia.org/wiki/Newton's_method

Aside: NR method

More multiplications!

ell fefined. Let X,
erates x,

successively improve on the guess X, as an approximation to x
(roughly doubling the number of correct digits at each step).

IIIIII 'ERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

Lesson objectives

 Understand and articulate need for subroutines (or functions)

 Understand callee-save and caller-save notions for saving
registers

 Be able to write subroutines in LC3 assembly
* Understand return-linkage mechanism

e Understand difference between user-written subroutines and
TRAPSs

IIIIII 'ERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

Subroutines

* Subroutines are blocks/pieces of code that do something specific.
Examples:

 Multiply two numbers
e Sort a list of integers
 Read keyboard press into a register

e Often called functions, methods, procedures, service calls, etc.

e Different from functions in mathematics or functional
programming languages!

'''''' 'ERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

Functions vs. subroutines

» In mathematics, a function f(x) takes a value from a set and
returns a value in a(nother) set. If you call f with some particular
value x,, then it always returns f(x).

e |[n CS/programming, a function foo is a piece of code that can be
called, perhaps with inputs, and does some stuff and maybe
returns something.

* |n functional languages (in theory at least), you can replace a
function call with its return value and nothing should break.

IIIIII 'ERSITY OF

ECE 220 - Spring '26

ILLINOIS

https://en.wikipedia.org/wiki/Functional_programming#Referential_transparency
https://en.wikipedia.org/wiki/Functional_programming#Referential_transparency

Subroutines

* User invokes or calls ,/ \

subroutine - ‘ — - o @ |e
— A
Y
» Subroutine code performs Y 1 @Refg A
operation / task Z Cza” VARG j/
e Returns control to user A !
program with no other W

unexpected changes

(a) Without subroutines (b) With subroutines

Figure 8.2 - P&P 3rd Ed.

ECE 220 - Sprina '26 1L ILLINOIS

Subroutines in LC3

* Recall instructions that change
program flow

e Subroutines make use of the
JSR(R) and RET commands.

 What is/are the difference(s)
between BR/JIMP and JSR/
JSRR?

IIIIIIII

BR 0000 n z|p PCoffset9

1 | lZ 1 1 1 £ 1 1 1 £ 1 1 1 |l

T I 1 ! 1 I r [T T 1T 1 71
JMP 1100 000 BaseR 000000

1 1 1] 1 | i 1 1 1 1 1

T I 17 71T 1T 1T "1 71T 1T 1T 1T T "7 7
JSR 0100 1 PCoffset11

—— e e e
JSRR 0100 O| 00 | BaseR 000000

| I | | 17 1T "1 "7 1T 1T 1T 711
RET 1100 000 111 000000

S e e s
RTI 1000 000000000000
TRAP 1111 0000 trapvect8

| ! l | | | L 1 I 1 1 1 1

Figure “A.2” - P&P 3rd Ed.

ECE 220 - Spring '26

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

RET & JMP

J MP Jump

RET Return from Subroutine

Assembler Formats

e JMP & RET are relatives; op- IMP BascR

. RET
code Is the same
Encoding
15 12 1 9 8 6 5 0
o : e T T T 1 T T T T | T T T T
JMP PC BaseR JMP 1100 000 BaseR 000000
RET PC R7 15 12 1 9 8 A 6 5 A 0
o [— T . T | T T T T T T T
° RET 1100 000 111 000000

ECE 220 - Sprina '26 1L ILLINOIS

JSR & JSRR

» When JSR(R) is encountered R7 is JSR Jump to Subroutine
loaded with PC+ and then PC is set in JSRR
one Of tWO WayS Assembler Formats
JSR LABLL
JSRR BaseR
* JSR and JSRR differ in addressing Encoding
modes (signified by bit #11). . ———— :
JSR lo‘lool 1 | | IPColffs?ﬁil o
e PC « PC + SEXT(PCoffsetll) v samoe s es
JSRR 0100 |0 00 BaseR - 000000

* PC « BaseR
Appendix A, P&P 3rd Ed.

e After subroutine ends, RET iIs used to
return to caller

+ Recall PC is incremented after FETCH.
ECE 220 - Spring '26 1L ILLINOIS

Using subroutines

Saving & restoring registers

 Jo use a subroutine the user must know:
* |t's address (or label)
» |t’s arguments (where to pass in data, if any)

* |t’s return values (where to put computed data, if any)

e \What it does

 Maybe not all the gory details but definitely registers it may
use or overwrite!

IIIIII 'ERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

Using subroutines

Saving & restoring registers

Generally we have two strategies depending on who saves/restores
registers:

» Caller-saved: Onus on user to save/restore registers that will be needed
later; may not know what registers subroutine will use

 User saves/restore registers they will need (or know could get
destroyed)

 Callee-saved: Subroutine knows registers it will alter/use, but cannot
know what the user will need later

 Subroutine saves/restores registers it will use

IIIIII 'ERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

Using subroutines

Saving & restoring registers

Good practices:

 Keep R7 unused, especially for nested subroutines

 Use callee-save, except for return values (should be caller
saved)

* Restore incoming arguments to their original values unless
intended to be overwritten by return value

IIIIII 'ERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

LC3 subroutine to multiply two numbers
Inputs: RO (multiplicand), R1 (multiplier)
Output: R2 (result)

Example

Multiplication

e «e we

MULTIPLY:
ST RO, MulSaveRO0 ; Callee save registers
Try tO Complete ST R1, MulSaveRl1l
MULTIPLY AND R2, R2, #0 :+ Clear R2 to be used as result
. ADD R2, RO, #O ; Load multiplicand into R2

SUbrOUtlne by ADD R1l, R1l, #-1 + Use R1 as counter
filling In the T
MISSINg plece.
Driver code is on Github. MUL_DONE:

This snippet doesn’t LD RO, MulSaveRO0 ; Restore registers

show .ORIG, .END or LD R1, MulSaveRl

label definitions! RET + Return from the subroutine

UNIVERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

Exercise

Exponentiation

Use the
MULTIPLY
subroutine In
the previous
slide to write
an LC3
subroutine that
performs
exponentiation.

; LC3 subroutine to that performs exponentiation
; Inputs: RO (base), R1 (exponent)

Loop counter: R2

Output: R2 (result)

; POW knows it should call MULTIPLY and it knows
s MULTIPLY overwrites the value in R2

e

e

POW:
POW LOOP:
BRz POW_DONE ; If R2==0, loop complete
ST R2, PowSaveR2 ; Caller save
JSR MULTIPLY + Result in R2
ADD R1, R2, #O ; Copy result for next multiply
LD R2, PowSaveR2 s Caller restore
ADD R2, R2, #-1 + Decrement counter

BR POW LOOP

POW_DONE:

UNIVERSITY

ECE 220 - Spring '26

ILLINOIS

; LC3 subroutine to that performs exponentiation
; Inputs: RO (base), R1 (exponent)

Loop counter: R2

Output: R2 (result)

; POW knows it should call MULTIPLY and it knows

e

Exercise

e

Exponentiation . MULTIPLY overwrites the value in R2
POW:
ST RO, PowSaveRO0 ; Callee save registers
Use the ST R1, PowSaveRl
MULTIPLY ADD R2, R1l, #-1 ; Initialize counter
. . ; Why can't we use R1 as counter?
subroutine In ADD R1, RO, #0 : Set up to call MULTIPLY
the previous POW LOOP:
slide to write BRz POW_DONE ; If R2==0, loop complete
ST R2, PowSaveR2 ; Caller save
an LC3 JSR MULTIPLY .+ Result in R2
: ADD R1l, R2, #O ; Copy result for JSR to multiply
SUbrOUtlne that LD R2, PowSaveR2 s Caller restore
perf()rms ADD R2, R2, #-1 ; Decrement counter

BR POW LOOP

exponentiation.

POW DONE:
ADD R2, R1l, #O + Move result to R2
Will this program halt? LD RO, PowSaveR0 ; Callee restore
Why? Why not? LD R1, PowSaveRl
RET

UNIVERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

User routine vs. service routine

* Consider keyboard input:

* |t’s used often and has too many specific details for most
programmers

* |Improper usage could breach security of the system or mess up
keyboard usage for other users/programs

» Solution: make this part of the OS

* User program — invokes service routine (a.k.a OS call) = OS
performs operation — returns control to user program

lelelele 'ERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

TRAP mechanism

TRAP

Assembler Format
TRAP trapvector8

System calls in LC3 are achieved System Call

using the TRAP mechanism

x0000

Encoding

15 2z 1 8 7
= L T T T T T T 1
1111 trapvect8

Trap Vector Table

x00FF

x0100

Interrupt Vector Table — EE— —_—
x01FF - % Syslem Space
x0200’_’_. / (Privileged]

SSP == panes e x0000 .
P upervisor Stac : .
x3000 . *

x0020 xO3EO
AN User Space
/ (Unprivileged Memory) x0021 x0420
TSP — % - == mmmm e mm e
0022 0460
EDEI User Stack X X
e x00 x04A0
xFEOO
Device Register Addresses x0024 x04EOQ
xR x0025 x0520
Figure A.1 - P&P 3rd Ed. . .
xOOFF *

ECE 220 - Spring '26

ERSITY OF

JC ILL

INOIS

TRAP mechanism

Table A.3 of P&P 3rd Ed.

Vector Symbol Routine
x20 GETC Read a single character (no echo)
x21 OuT Output character to monitor
X22 PUTS Write a string to monitor
xX23 IN Print prompt to monitor, read and echo character from keyboard
x24 PUTSP Write a string to monitor, two characters per memory location
X25 HALT Halt program
X26 Write a number to monitor (undocumented)

Exercise at home: Try using each of these!

ECE 220 - Sprina '26 1L ILLINOIS

TRAP: Flow Control

e Slight difference
between editions of the
textbook

e Edition 2; Last
statement in TRAP Is
JMP R7 (i.e. RET)

e Edition 3; Last
statement iIs RTI

User program

1111 00000010 0011 F

x0000

x0023,

x00FF

Trap Vector Table

0000 0100 1010 0000

x04A0

B

Character input
service routine

1000 000000000000

Figure 9.11 In P&P 3rd Ed.

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

ECE 220 - Spring '26

TRAP Mechanism: 2nd Ed.

User Program System Control Block
e MAR + ZEXT(trapvect$8) | -
e MDR + MEM[MAR] A 7

//
’
e R7 + PC R
1111 0000 C©CO10 0011
® +—
P C MD R Service Routine
(. x04Al
o B
1100 000 111 ©QQQOO00

e JMP R7

ECE 220 - Sprina '26 1L ILLINOIS

TRAP example

e \What are the values in RO .ORIG %3000
and R7 right before IN?

AND RO, RO, #0 +init RO
. ADD RO, RO, #3 sset RO to 3
 How about right before ADD R7, RO, #4 ;set R7 to 7
n ADD RO, RO, #1 sincrement RO
HALT ADD R7, R7, #1 sincrement R7
IN ssame as ‘TRAP x23'
ADD RO, RO, #1 sincrement RO
ADD R7, R7, #O sincrement R7
HALT
. END

ECE 220 - Sprinqg '26 ILLINOIS

RTI: Return from TRAP/Interrupt

e 2nd edition: LC3 will
overwrite R7

e 3rd edition: R7 will be

IIIIIIII

left unchanged.

e Mechanism? Uses
stacks — next

BR 0000 n z|p PCoffset9
1 | lZ 1 1 1 £ 1 1 1 £ 1 1 1 |l
T I 1 ! 1 I r [T T 1T 1 71
JMP 1100 000 BaseR 000000
1 1 1] | i 1 1 1 1 1
T I 17 71T 1T 1T "1 71T 1T 1T 1T T "7 7
. JSR 0100 1 PCoffset11
ich one —= R
JSRR 0100 O 00 | BaseR 000000
does E Rl 1 i B S
| I | | 1 | L D L D D D |
RET 1100 000 111 000000
— _— —————r
RTI 1000 000000000000
TRAP 1111 0000 trapvect8
| ! l | | | L 1 I 1 1 1 1

lecture.

Figure “A.2” - P&P 3rd Ed.

ECE 220 - Spring '26

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

http://xahlee.info/comp/unicode_arrows.html

TRAP vs. subroutines

e Service routines (TRAP) provide 3 main functions

e Shield programmers from system-specific details (KBDR, KBSR, etc.)
* Write frequently-used code just once
* Protect system recourses from malicious/clumsy programmers
e Subroutines provide the same functions for non-system (user) code
* Lives in user space
* Performs a well-defined task
* |s invoked (called) by another user program

* Returns control to the calling program when finished

IIIIII 'ERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

