
 ECE 220 - Spring '26 Dr. Ivan Abraham

ECE 220
Lecture x0000 - 01/20

Slides based on material by: Yuting Chen, Yih-Chun Hu & Ujjal Bhowmik

 ECE 220 - Spring '26 Dr. Ivan Abraham

Course logistics
• Lectures: Tuesdays & Thursday

• Three sections offered by different instructors

• This one (1500, BL3), Prof. Yuting Chen (1100, BL2) and Prof. Hu
(1230, BL).

• Labs: Fridays

• Starts on the hour, every hour from 0800 hrs until 1750 hrs

• Office hours: Schedule TBD, will be posted to website

￼2

https://courses.grainger.illinois.edu/ece220/sp2026/schedule/course_timings/#staff_office_hours

 ECE 220 - Spring '26 Dr. Ivan Abraham

Course logistics
• Course Website (and syllabus)

• Grading: Gradescope + autograder

• Discussions: EdStem

• Quizzes: CBTF

• Machine problems (MPs): Github

• Textbook: Patt & Patel (3rd Ed)

￼3

x0010

x0011

https://courses.grainger.illinois.edu/ece220/sp2026/

 ECE 220 - Spring '26 Dr. Ivan Abraham

Course logistics
• MPs: 12 in total, lowest dropped

(except MP 12)

• Quizzes (in-person in CBTF): 6 total,
lowest dropped

• Exams (in-person, on-paper): 02/26
and 04/02

• Labs: make up points lost on MPs

￼4

 ECE 220 - Spring '26 Dr. Ivan Abraham

Syllabus review

￼5

 ECE 220 - Spring '26 Dr. Ivan Abraham

Quick recap of ECE 120

￼6

 ECE 220 - Spring '26 Dr. Ivan Abraham

Lesson objectives
• Recall Von Neumann model of computation

• Recall LC3 basics

• Number of GPRs, types of commands, addressing, etc.

• Write a small LC3 program

• Understand memory mapped I/O

• Handshaking procedures

• Implementation using LC3

￼7

 ECE 220 - Spring '26 Dr. Ivan Abraham

Computation
Von Neumann model

• Five major components:

1.

2.

3.

4.

5.

￼8

Figure 4.1 - P&P 3rd Ed.

 ECE 220 - Spring '26 Dr. Ivan Abraham

LC3 Review
• Eight GPRs - denoted ______________________.

• Data type: 16-bit 2’s complement integers

• Addressing: Locations ________________ contain 16 bits each.

• Addressing modes:

• Immediate, register relative, PC-relative, base + offset, indirect

￼9

 ECE 220 - Spring '26 Dr. Ivan Abraham

LC3 - Review
Addressing modes

• PC relative, the address is calculated by adding an offset to the incremented
program counter, PC.

• Register relative, address is read from a register.

• Indirect, address is read from a memory location whose address is
calculated by adding an offset to the incremented program counter.

• Load effective address (LEA), address is calculated by adding an offset to
the incremented program counter. The address itself (not its value) is stored in
a register.

￼10

 ECE 220 - Spring '26 Dr. Ivan Abraham

LC3 - Review
Addressing modes

￼11

Opcode Name Assembly Operation

LD Load LD DR, label dr = mem[pc + SX(offset9)]

LDR Load
Register LDR DR, BaseR, offset6 dr = mem[baseR + SX(offset6)]

LDI Load
Indirect LDI DR, label dr = mem[mem[pc + SX(offset9)]]

LEA Load Eff.
Addr. LEA DR, target dr = pc + SX(offset9)

ST Store ST SR, label mem[pc + SX(offset9)] = sr

STR Store
Register STR SR, BaseR, offset6 mem[baseR + SX(offset6)] = sr

STI Store
Indirect STI SR, label mem[mem[pc + SX(offset9)]] = sr

Sign-extend (SX), by replicating the most significant bit as many times
as necessary to extend to the word size of 16 bits.

 ECE 220 - Spring '26 Dr. Ivan Abraham

LC3 - Review
Instruction set

￼12

Figure A.2 - P&P 3rd Ed.

Operation Data movement Program flow

Set
condition

codes

 ECE 220 - Spring '26 Dr. Ivan Abraham

Exercise

￼13

.ORIG x3000
 LD R1, LABEL

 LDI R2, LABEL

 LDR R3, R2, #1

 LEA R4, LABEL

 LABEL .FILL x4001

.END

What are the values of R1,R2,R3 & R4 at each step?

; x4001 x6001

; ……

; x6001 x7001

; x6002 x7002

Assume

 ECE 220 - Spring '26 Dr. Ivan Abraham

Exercise
• Write a program to perform the

multiplication 5 x 4.

• Need a way to store 5 and 4 as
arguments

• There is no multiplication operation

• So have to repeat addition

￼14

.ORIG x3000
; R0 - output, init to 0
; R1 - multiplicand 1, init to 5
; R2 - loop counter, init to multiplicand 2

 ECE 220 - Spring '26 Dr. Ivan Abraham

LC3 - Review
Pseudo-ops
• Looks like instruction but the “opcode” starts with a dot.

• Assembler instructions/directives that make our lives easier.

￼15

Opcode Operand Meaning

.ORIG address Starting address of program

.END End of program

.BLKW n Allocate n words of storage

.STRINGZ n-character string Allocate n+1 locations, initialize
with characters and null terminator

 ECE 220 - Spring '26 Dr. Ivan Abraham

Textbook v2 vs. v3
• What is different in v3 compared

to v2?

• LEA no longer sets condition
codes

• TRAP instructions do not store
linkage in R7

This probably doesn’t
mean much to you right
now …

￼16

• What does that mean for you?

• Do MPS on EWS machines!

• Practice for the quiz on the
online simulator: https://
courses.grainger.illinois.edu/
ece220/sp2020/lc3web/
index.html

https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html
https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html
https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html
https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html

 ECE 220 - Spring '26 Dr. Ivan Abraham

Memory mapped I/O
• How do we communicate with the computer?

• Memory-mapped I/O: Hardware devices (i.e. their registers) are treated
the same as the computer’s main memory and addressable the same way

• Memory of peripherals is physically separate from main memory

• Alternative: Port mapped I/O (older paradigm, requires having more
specialized instructions)

• In LC3: KBDR,KBSR,DSR,DDR are used for [K]eyboard and [D]isplay
respectively.

￼17

https://en.wikipedia.org/wiki/Memory-mapped_I/O_and_port-mapped_I/O

 ECE 220 - Spring '26 Dr. Ivan Abraham

LC3 - Input/Output (IO)

￼18

Address I/O Register Name I/O Register Function

xFE00 Keyboard status register
(KBSR)

The ready bit (bit[15])
indicates if the keyboard has

received a new character

xFE02 Keyboard data register
(KBDR)

Bits [7:0] contain the last
character typed on the keyboard

xFE04 Display status register
(DSR)

The ready bit (bit[15])
indicates if the display device

is ready to receive another
character to print on the screen

xFE06 Display data register
(DDR)

A character written in bits
[7:0] will be displayed
displayed on the screen

Figure A.1 - P&P 3rd Ed.

 ECE 220 - Spring '26 Dr. Ivan Abraham

LC3 - Input/Output (IO)

￼19

Address I/O Register Name I/O Register Function

xFE00 Keyboard status register
(KBSR)

The ready bit (bit[15])
indicates if the keyboard has

received a new character

xFE02 Keyboard data register
(KBDR)

Bits [7:0] contain the last
character typed on the keyboard

xFE04 Display status register
(DSR)

The ready bit (bit[15])
indicates if the display device

is ready to receive another
character to print on the screen

xFE06 Display data register
(DDR)

A character written in bits
[7:0] will be displayed
displayed on the screen

 ECE 220 - Spring '26 Dr. Ivan Abraham

LC3 - Input from keyboard
Basic routine

￼20

Handshaking is performed using KBSR & KBDR

• When user presses a key

• Its ASCII code is placed in KBDR[0:7]

• KBSR[15] is set to 1 (ready bit)

• Keyboard is disabled, i.e., any further keypress is ignored

• When KBDR is read by CPU

• KBSR[15] is set to 0

• Keyboard is enabled

 ECE 220 - Spring '26 Dr. Ivan Abraham

LC3 - Input from keyboard

￼21

Basic routine

Read
character

New
char?NO

YES

.ORIG x3000

;Create a loop to
check KBSR

;If ready bit unset
loop again

;If ready bit set,
read KBDR into R0

KBSR .FILL xFE00

KBDR .FILL xFE02

.ORIG x3000

KPOLL LDI R1, KBSR

BRzp KPOLL

LDI R0, KBDR

;…

;…

HALT

KBSR .FILL xFE04

KBDR .FILL xFE06

.END

 ECE 220 - Spring '26 Dr. Ivan Abraham

LC3 - Display to console

￼22

Handshaking is performed using DSR & DDR

• When display is ready to present a character

• DSR[15] is set to 1 (ready bit)

• When a new character is written to DDR

• DSR[15] is set to 0

• Any other chars written to DDR are ignored

• DDR[7:0] is displayed

Basic routine

 ECE 220 - Spring '26 Dr. Ivan Abraham

LC3 - Display to console
Basic routine

￼23

Write
Character

Screen
ready?NO

YES

.ORIG x3000

;Create a loop to
check DSR

;If ready bit unset
loop again

;If ready bit set,
write R0 into DDR

DSR .FILL xFE04

DDR .FILL xFE06

.ORIG x3000

DPOLL LDI R1, DSR

BRzp DPOLL

STI R0, DDR

;…

;…

HALT

DSR .FILL xFE00

DDR .FILL xFE02

.END

 ECE 220 - Spring '26 Dr. Ivan Abraham

Exercise

￼24

• Write a program to display
“ECE 220 is fun!” to the
console. You can use the
pseudo-op .STRINGZ to
store string to memory. Do
not use TRAP codes (if you
know what they are).

ECE 220 - Spring '26 Dr. Ivan Abraham

Issues?
• Consider “echo” routine:

￼25

KPOLL LDI R1, KBSR
 BRzp KPOLL
 LDI R0, KBDR

DPOLL LDI R1, DSR
 BRzp DPOLL
 STI R0, DDR

 BRnzp NEXT_TASK
KBSR .FILL xFE00
KBDR .FILL xFE02
DSR .FILL xFE04
DDR .FILL xFE06

• Reading & writing from
keyboard or display is common
task

• Inefficient to keep repeating
this code

• Need to free up R1 and R0
for use whenever blocks run

• Save/restore current
values before/after these
blocks run

ECE 220 - Spring '26 Dr. Ivan Abraham

Recap from last time
• Consider “echo” routine:

￼26

;SAVE R0, R1
KPOLL LDI R1, KBSR
 BRzp KPOLL
 LDI R0, KBDR
;RESTORE R0, R1

;SAVE R0, R1
DPOLL LDI R1, DSR
 BRzp DPOLL
 STI R0, DDR
;RESTORE R0, R1

 BRnzp NEXT_TASK
KBSR .FILL xFE00
KBDR .FILL xFE02
DSR .FILL xFE04
DDR .FILL xFE06

• Reading & writing from
keyboard or display is common
task

• Inefficient to keep repeating
this code

• Need to free up R1 and R0
for use whenever blocks run

• Save/restore current
values before/after these
blocks run

ECE 220 - Spring '26 Dr. Ivan Abraham

Repeating code

￼27

• Consider ￼

• Evaluate ￼

• How many multiplications?

f(x) = x4 + 4x3 + 3x2 + 2x + 1

f (2)

ECE 220 - Spring '26 Dr. Ivan Abraham

Repeating code
• Consider ￼

• Evaluate ￼

• How many multiplications?

• Suppose we wish to evaluate ￼ for many values of ￼

• Why? E.g. Newton-Raphson method for finding roots of ￼

f(x) = x4 + 4x3 + 3x2 + 2x + 1

f (2)

f(x) x

f(x)

￼28

https://en.wikipedia.org/wiki/Newton's_method

 ECE 220 - Spring '26 Dr. Ivan Abraham

Issues?

• Limited amount of GPRs - polling display & keyboard uses up two
of them

• Code often repeated - inefficient to keep inserting same code over
& over again

• Human error - keeping track of registers & having direct access to
hardware registers is recipe for unforced errors & bugs

￼29

 ECE 220 - Spring '26 Dr. Ivan Abraham

Solution?

￼30

• Subroutines & repeated code

• Also called functions

• TRAP routines

• More next time ...

