ECE 220

Lecture x0000 - 01/20

Slides based on material by: Yuting Chen, Yih-Chun Hu & Ujjal Bhowmik

ECE 220 - Spring '26 ILLINOIS

Course logistics

* Lectures: Tuesdays & Thursday
* Three sections offered by different instructors

* This one (1500, BL3), Prof. Yuting Chen (1100, BL2) and Prof. Hu
(1230, BL).

 Labs: Fridays
e Starts on the hour, every hour from 0800 hrs until 1750 hrs

« Office hours: Schedule TBD, will be posted to website

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

https://courses.grainger.illinois.edu/ece220/sp2026/schedule/course_timings/#staff_office_hours

x0010

Course logistics s

from buts & gates fo (& begoad

* Course Website (and syllabus)

 Grading: Gradescope + autograder
* Discussions: EdStem

* Quizzes: CBTF

 Machine problems (MPs): Github

 Textbook: Patt & Patel (3rd Ed)

ECE 220 - Spring '26 JL ILLINOIS

https://courses.grainger.illinois.edu/ece220/sp2026/

Course logistics

* MPs: 12 in total, lowest dropped
(except MP 12) Group
Labs
* Quizzes (in-person in CBTF): 6 total,
lowest dropped

Machine Problems

Midterms
» Exams (in-person, on-paper): 02/26 Final Exam
and 04/02 Quizzes
Total

 Labs: make up points lost on MPs

Weight
0%
15%
40%
25%
20%

100%

IIIIII 'ERSITY OF

ECE 220 - Spring '26

ILLINOIS

Syllabus review

VERSITY

ECE 220 - Spring '26 ILLINOIS

Quick recap of ECE 120

Lesson objectives

* Recall Von Neumann model of computation

* Recall LC3 basics
* Number of GPRs, types of commands, addressing, etc.
* Write a small LC3 program

 Understand memory mapped |I/O
 Handshaking procedures

* |mplementation using LC3

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Computation

Von Neumann model

MAR MDR
[V
* Five major components:
: Keyboard ¥ * Monitor
1 . . Mouse * Printer
Scanner Y LED
* Card reader * Disk
* Disk s

N
n \ ALU / | TEMP A

|
|
|
|
|
I
|

-

P — — w— — w— —
-
—

2
3
4.
5

Figure 4.1 - P&P 3rd Ed.

ECE 220 - Spring '26 E ILLINOIS

LC3 Review

 Eight GPRs - denoted

 Data type: 16-bit 2’s complement integers

 Addressing: Locations contain 16 bits each.

* Addressing modes:

* |mmediate, register relative, PC-relative, base + offset, indirect

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

LC3 - Review

Addressing modes

 PC relative, the address is calculated by adding an offset to the incremented
program counter, PC.

* Register relative, address is read from a register.

* Indirect, address is read from a memory location whose address is
calculated by adding an offset to the incremented program counter.

 Load effective address (LEA), address is calculated by adding an offset to
the incremented program counter. The address itself (not its value) is stored in
a register.

ECE 220 - Spring '26

LC3 - Review

Ad d reSSI n g m Od eS Sign-extend (SX), by replicating the most significant bit as many times

as necessary to extend to the word size of 16 bits.

Opcode Name Assembly Operation

LD Load LD DR, label dr = mem[pc + SX(offset9)]
Load

LDR . LDR DR, BaseR, offset6 dr = mem[baseR + SX(offset6)]
Register

LDI ek LDI DR, label dr = mem[mem[pc + SX(offset9)]]
Indirect ’ - P

LEA kggﬁ EFE. LEA DR, target dr = pc + SX(offset9)

ST Store ST SR, label mem[pc + SX(offset9)] = sr
Store

STR : STR SR, BaseR, offsetb mem[baseR + SX(offsetb6)] = sr
Register

STI Sl STI SR, label mem[mem[pc + SX(offset9)]] = sr
Indirect ’ P -

IVERSITY OF

ECE 220 - Spring '26 ILLINOIS

LC3 - Review

Instruction set

A

A

A

A

A

A

A

1514131211109 8 7 6 5 4 3 2 1 0

| | 1 | | | I I | |
ADD* 0001 DR SR1 0| 00 SR2

—— — — ——r—
ADD* 0001 DR SR1 1 imm5

—— — — ———
AND* 0101 DR SR1 0| 00 SR2
AND* 010 DR SR1 1 imm5S
BR 0000 zZ|p PCoffset9

1 1 1 1 L | 1 1 | | 1
JMP 110 000 BaseR 000000

1 L 1 1 1 1 1 1 1 1 1 1

| I | 1 |] 1] | | 1 I
JSR 010 PCoffset11

—r— i ————r—T
JSRR 010 00 BaseR 000000

—— — =
LD* 0010 DR PCoffset9

—r— — =S
LDI* 1010 DR PCoffset9
LDR* 0110 DR BaseR offset6
LEA 1110 DR PCoffset9

ECE 220 - Spring '26

I | | | 1 T I T I 1 1
NOT" 1001 DR SR 111111
S o — ——
RET 1100 000 111 000000
S S —r
RTI 1000 000000000000
ST 0011 SR PCoffset9
e — ——rr———
STI 1011 SR PCoffset9
| I || I 1] I | | 1
STR 0111 SR BaseR offset6
1 1 | | 1 | 1 1 1 | |
] I 1 I I] |]] | 1
TRAP 1111 0000 trapvect8
—r — — T
reserved 1101
1 | 1 | 1 | 1 1 1 1 | 1
Figure A.2 - P&P 3rd Ed.
Operation Data movement

Program flow

)
o

NIVERSITY OF

LLINOIS

Exercise

.ORIG %3000 What are the values of R1,R2,R3 & R4 at each step?
LD R1, LABEL

LDI R2, LABEL

LDR R3, R2, #1
LEA R4, LABEL
LABEL .FILL x4001
.END

Assume

; x4001 x0001

; x0001 x7001
; x0002 x7002

ECE 220 - Spring '26 E ILLINOIS

Exercise

.ORIG x3000
* Write a program to perform the ; RO - output, init to 0
multlpllcatlon 5 X 4 s+ R1 - multiplicand 1, init to 5
; R2 - loop counter, init to multiplicand 2

* Need a way to store 5 and 4 as
arguments

* There is no multiplication operation

* So have to repeat addition

ECE 220 - Spring '26 E ILLINOIS

LC3 - Review

Pseudo-ops

* Looks like instruction but the “opcode” starts with a dot.

e Assembler instructions/directives that make our lives easier.

Opcode Meaning

.ORIG

address Starting address of program

.END

End of program

.BLKW n Allocate n words of storage

Allocate n+l1l locations, initialize
with characters and null terminator

STRINGZ n-character string

ECE 220 - Spring '26 1L ILLINOIS

Textbook v2 vs. v3

* What is different in v3 compared ¢ What does that mean for you?
to v27?

e Do MPS on EWS machines!

 LEA no longer sets condition

codes Practice for the quiz on the

online simulator: https://
courses.grainger.illinois.edu/

e TRAP |Instructions do not store

linkage In R7
J ece220/sp2020/lc3web/
This probably doesn’t index.html
mean much to you right
now ...

ECE 220 - Spring '26 JL ILLINOIS

https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html
https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html
https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html
https://courses.grainger.illinois.edu/ece220/sp2020/lc3web/index.html

Memory mapped I/O

* How do we communicate with the computer?

« Memory-mapped I/0: Hardware devices (i.e. their reqgisters) are treated
the same as the computer’s main memory and addressable the same way

 Memory of peripherals is physically separate from main memory

» Alternative: Port mapped I/O (older paradigm, requires having more
specialized instructions)

 |In LC3: KBDR,KBSR,DSR, DDR are used for [K]eyboard and [D]isplay
respectively.

ECE 220 - Spring '26

IIIIII 'ERSITY OF

ILLINOIS

https://en.wikipedia.org/wiki/Memory-mapped_I/O_and_port-mapped_I/O

LC3 - Input/Output (10)

Address I/0 Register Name I/0 Register Function

x0000

Trap Veclor Table \
x00FF _ .
x0100 ‘ Keyboard status register . The rea@y bit (bit[15])

Interrupt Vector Table \ xFEQQ (KBSR) indicates if the keyboard has

x01FF % System Space received a new character
X020 ./ (Privileged Memory)

SSP g S Keyboard data register Bits [7:0] contain the last
FFF Supervisor Stack ‘ / AFEE (KBDR) character typed on the keyboard
x3000

N User Space The ready bit (bit[15])
/ (Unprivileged Memory) <FEQ4 Display status register indicates if the display device

USP — haasiasaiad i i aaiaanaaanang (DSR) is ready to receive another
EDEL User Stack character to print on the screen
xFEOO

Device Register Addresses A o , L b
«FEFF Display data register character written 1n bits

xFEQG [7:0] will be displayed

(DDR) displayed on the screen

Figure A.1 - P&P 3rd Ed.

ECE 220 - Spring '26 E ILLINOIS

LC3 - Input/Output (10)

Address I/0 Register Name I/0 Register Function

15 B 7 | 0
v
KBDR Keyboard status register The ready bit (bit[15])
1514 0 xFEQQ Y (KBSR) g indicates 1f the keyboard has
g KBSR received a new character
YFE0? Keyboard data register Bits [7:0] contain the last
(KBDR) character typed on the keyboard
The ready bit (bit[15])
«FEQ4 Display status register indicates if the display device
15 8 7 0 (DSR) 1s ready to receive another
character to print on the screen
’ DDR
1514 0
_F DSR Display data register A character written in bits
xFEQ6 pray g [7:0] will be displayed

(DDR) displayed on the screen

ECE 220 - Spring '26 E ILLINOIS

LR

LC3 - Input from keyboard

Basic routine
Handshaking is performed using KBSR & KBDR

 \WWhen user presses a key
e |ts ASCII code is placed in KBDR[0: 7]

e KBSR[15] Is setto 1 (ready bit)

 Keyboard is disabled, i.e., any further keypress is ignored

 When KBDR is read by CPU
e KBSR[15]Issetto 0

 Keyboard is enabled

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

LC3 - Input from keyboard

Basic routine

.ORIG x3000 .ORIG x3000
;Create a loop to KPOLL LDI R1, KBSR
check KRBRSR BRzp KPOLL

LDI RO, KBDR
;If ready bit unset

loop again

. HALT
; If ready bit set,

read KBDR into RO

KBSR .FILL xFEQO4

Read
character KBSR .FILL xFEOO KBDR .FILL xFEO®

KBDR .FILL xFEO0Z . END

ECE 220 - Spring '26 E ILLINOIS

LC3 - Display to console

Basic routine
Handshaking is performed using DSR & DDR

 When display is ready to present a character

e DSR[15] is setto 1 (ready bit)

 When a new character is written to DDR
e DSR[15]Issetto O
* Any other chars written to DDR are ignored

e DDR[7:0] Is displayed

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

LC3 - Display to console

Basic routine

.ORIG x3000 .ORIG x3000
;Create a loop to DPOLL LDI R1, DSR
check DSR

BRzp DPOLL
STI RO, DDR

Screen
ready?

;If ready bit unset
loop again

. HALT
; If ready bit set,

write RO into DDR

DSR .FILL xFEOO

Write
Character DSR .FILL xFEQ4 DDR .FILL xFEQOZ

DDR .FILL xFEOQOG . END

ECE 220 - Spring '26 E ILLINOIS

Exercise

* Write a program to display
“*ECE 220 is fun!” to the
console. You can use the
pseudo-op .STRINGZ to
store string to memory. Do
not use TRAP codes (if you
know what they are).

ECE 220 - Spring '26 E ILLINOIS

Issues?

* Consider “echo” routine: » Reading & writing from

KPOLL LDI R, KBSR keyboard or display is common
BRzp KPOLL task

LDI RO, KBDR

* |nefficient to keep repeating

this code
DPOLL LDI R1, DSR
BR DPOLL
st RO, DDR e Need to free up R1 and RO

for use whenever blocks run

vt e S Save/restore current

KBDR .FILL XFE02 values before/after these
DSR FILI XFEQ4

DDR .FILL xFE06 blocks run

ECE 220 - Sprinqg '26 ILLINOIS

Recap from last time

* Consider “echo” routine: » Reading & writing from
"SAVE RO, R1 keyboard or display is common
KPOLL LDI R1, KBSR task
BRzp KPOLL
0, . .
msrone w0, T « Inefficient to keep repeating
this code
N Need to free up R1 and RO
BRzp for use whenever blocks run

STI
:RESTORE RO,

e Save/restore current

BRnzp NEXT_TASK values before/after these
KBSR FILIL XFEOQOO
KBDR .FILL xFEO02 blocks run
DSR FILIL XFEQ4
DDR FILI, XFEQO6

ECE 220 - Sprina '26 1L ILLINOIS

Repeating code

. Consider f(x) = x* +4x> + 3x* + 2x + 1

 Evaluate f(2)

 How many multiplications?

ECE 220 - Sprina '26 1L ILLINOIS

Repeating code

. Consider f(x) = x* +4x> + 3x* + 2x + 1

 Evaluate f(2)

 How many multiplications?
» Suppose we wish to evaluate f(x) for many values of x

« Why? E.g. Newton-Raphson method for finding roots of f(x)

IIIIII 'ERSITY OF

ECE 220 - Sprinqg '26 ILLINOIS

https://en.wikipedia.org/wiki/Newton's_method

Issues?

* Limited amount of GPRs - polling display & keyboard uses up two
of them

* Code often repeated - inefficient to keep inserting same code over
& over again

 Human error - keeping track of registers & having direct access to
hardware registers is recipe for unforced errors & bugs

IIIIII 'ERSITY OF

ECE 220 - Spring '26 ILLINOIS

Solution?

 Subroutines & repeated code
* Also called functions

e TRAP routines

e More next time ...

ECE 220 - Spring '26 JL ILLINOIS

