
ECE 220 Computer Systems & Programming

Lecture 15 – Data Structures

Processing Student Records:

• Given a data file:

• We want to sort the data according to the GPA ??

• The file could have 100’s of students’ records?

Data Type

Three fundamental data types:

▪ integer

▪ float/double

▪ char

We also discussed:

o Array

o Pointer

2

Structures

▪ allow user to define a new type consists of a combination of fundamental
data types (aggregate data type)

▪ Example: a repository of students and their grades in this class

▪ netID, can be captured as an array of chars (string):
char name[100];

▪ Student UIN, can be stored as an int;

▪ GPA of the student, can be stored as a float: float GPA;

▪ There may be many other characteristics that we would want
to capture..

How do we capture them?

4

Structure – why we need it?
▪ If we only have one student, we can declare one variable per property:

▪ char netID[100];

▪ Int UIN;

▪ float GPA;

▪ If we have many (N) students, we can allocate arrays:

▪ char netID[N][100]; or char *netID[N]; ??

▪ Int UIN[N];

▪ float GPA[N];

▪ to access information about a particular student, we would need to access data in all
three arrays: netID[i], UIN[i], GPA[i]

▪ if there are only a few properties that we care about, this solution (using separate
arrays) may be acceptable

▪ but if we have many properties, the solution with arrays becomes cumbersome

▪ think about passing a large number of arguments to a function

▪ a better solution is to aggregate all the properties into a single object

Structures

▪ struct construct allows to create a new data type consisting of several
member elements (aggregate data type)

Example: student record

struct studentStruct

{

 char netID[10];

 int UIN;

 float GPA;

}; //In this example, we have created a new data type and gave it the tag studentStruct;

To declare a variable of this type, we can use the new data type’s name:
struct studentStruct student;

strncpy(student.netID, “abc1”, sizeof(student.netID));

student.UIN = 123456789;

student.GPA = 3.89;

//student.netID =“abc1”; //Compiler Error

//or we can just use one line

struct StudentStruct student = {“abc1”, 123456789, 3.89}; 4

Structures (run-time stack)

▪ struct construct allows to create a new data type consisting of several
member elements (aggregate data type)

Example: student record

struct studentStruct

{

 char netID[10];

 int UIN;

 float GPA;

};

struct studentStruct student;

student.UIN = 12;

student.GPA = 3.89;

strncpy(student.netID, “abc1”, sizeof(student.netID));

4

netID[0]

netID[1]

….

netID[8]

netID[9]

UIN

GPA

Structures (run-time stack)
struct studentStruct

{

 char netID[10];

 int UIN;

 float GPA;

};

int main()

{

int x;

struct studentStruct student;

int y;

student.UIN=0;

}

4

x

LC3 code of student.UIN=0;

AND R1, R1, #0; zero out R1

ADD R0,R5, #-12; R0 contains the base

 address of student

STR R1, R0, #10 ; student.UIN=0

R5

y

netID[0]

netID[1]

….

netID[8]

netID[9]

UIN

GPA

X

Using typedef

▪ C allows to give names to user-defined data types using typedef
keyword.

▪ Example:

typedef int color;

color image[10][20];

5

Using typedef

▪ C allows to give names to user-defined data types using typedef
keyword. Thus, we can give an alternative (shorter) name to “struct
tag“:

▪ typedef struct tag myType;
myType <varName>;

▪ here old name “struct tag” will be given a new name myType.

struct studentStruct

{

 char netID[100];

 int UIN;

 float GPA;

};

typedef struct studentStruct student;

student s1, s2;

5

Using typedef

▪ C allows to give names to user-defined data types using typedef
keyword. Thus, we can give an alternative (shorter) name to “struct
tag“:

▪ typedef struct tag myType;
myType <varName>;

▪ here old name “struct tag” will be given a new name myType.

struct studentStruct

{

 char netID[100];

 int UIN;

 float GPA;

}student;

typedef struct studentStruct student;

student s1, s2;

5

Using typedef (both approaches are same)

struct StudentStruct

{

 char Name[100];

 int UIN;

 float GPA;

};

typedef struct StudentStruct student;

student s1, s2;

/***********************************/

typedef struct StudentStruct

{

 char Name[100];

 int UIN;

 float GPA;

}student;

student s1, s2;
5

Arrays of structs

//create an array of student struct

student s[100];

//access each element of the array

s[0]

s[1]

//access individual fields in each element

s[0].netID[0] = ‘a’;

s[0].netID[1] = ‘b’;

s[0].netID[2] = ‘c’;

S[0].netID[3] = ‘1’;

s[0].UIN[3] = ‘11’;

s[0].GPA = 3.89;

7

struct StudentStruct

{

 char Name[100];

 int UIN;

 float GPA;

};

typedef struct StudentStruct student;

student s[100];

Read the student_file.txt and create an array of
structs of student records:

int main()
{
student s[BUF];
char filename[20];
int no_of_student;
printf("Enter the Student_record filename: ");
scanf("%s",filename);
no_of_student=load_data(filename, s);
print_data(s, no_of_student);
}

Read the student_file.txt and create an array of structs of student records:

int main()
{
student s[BUF];
char filename[20];
int no_of_student;
printf("Enter the Student_record filename: ");
scanf("%s",filename);
no_of_student=load_data(filename, s);
print_data(s, no_of_student);
}

int load_data(char filename[], student s[]){

 FILE *in;
 in=fopen(filename,"r");
 char temp[BUF];
 fgets(temp, BUF, in);
 int n=0;
while((fscanf(in,"%s %d %f",s[n].netID, &s[n].UIN,&s[n].GPA))!=EOF)
 n++;

 return n++;
}

Printing the student records:

void print_data(student s[],int n){
 int i;

printf("netID UIN GPA\n");
for (i=0; i<n;i++)

printf("%s %d %f\n", s[i].netID, s[i].UIN, s[i].GPA);

}

Sort student’s records based on GPA

void sort_GPA(student s[], int n){

 int i;
 int flag=1;

 while(flag){
 flag=0;

for (i=0; i<(n-1);i++)
 {
 if (s[i].GPA>s[i+1].GPA){
 swap_student(&s[i],&s[i+1]);
 flag=1;
 }
 }
 }
}

Swap student’s record:

void swap_student(student *s1, student *s2){
student temp;
temp=*s1;
*s1=*s2;
*s2=temp;
}

Pointer to Struct

student ece220[200];

student *ptr;

ptr = ece220; //pointer to a struct array

//ptr = &ece220[5];

ptr++; //where is ptr pointing to now?

strncpy(ptr->Name, “John Doe”, sizeof(ptr->Name));

ptr->UIN = 123456789; //(*ptr).UIN

ptr->GPA = 3.89; //(*ptr).GPA

//which student record has been changed?
8

typedef struct StudentName

{

 char First[30];

 char Middle[30];

 char Last[40];

}name;

student ece220[200];

student *ptr;

ptr = ece220;

//How can we set the ‘First’ name in the first student record?

strncpy(, “John”,);

9

typedef struct StudentStruct

{

name Name;

 int UIN;

 float GPA;

}student;

Struct within a Struct

Enumeration Constants:

Enumerated data type:

▪ An enumeration, introduced by the keyword enum, is a set of integer
constants represented by identifiers.

▪ Values in an enum start with 0, unless specified otherwise, and are
incremented by 1.

Syntax: enum [tag] { enumerator-list }

Example:

enum Months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC};

enum Months cur_month;

cur_month = MAR; //Here JAN equals 0, FEB equals 1, and so on..

//what is the value of cur_month?

//what if we define it this way?

enum Months {JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC};

3

Unions

▪ a union data type is similar to a struct, however, it defines a single
location in memory that can be given many different names

▪ Example:

▪ union valueUnion
{
 long int i_value;
 float f_value;
}

union valueUnion v;

v.i_value = 5; /* holds integer */
v.f_value = 5.25; /* now holds float */
/* but not both! */

6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24

