
ECE 220: Computer Systems & Programming

Lecture 5: Introduction to C
Ujjal Kumar Bhowmik

• MP2 due this Thursday.

• Mock Quiz1: 1/30 – 2/1

• Quiz1: 2/5 – 2/7

Introduction to C

Overview
C is a general-purpose high-level computer programming language

o Provides an abstraction from the underlying hardware

o Is independent of ISA

o Is expressive, meaning that complex tasks can be expressed with a small

amount of code

o Is much more readable than assembly code

▪ symbolic names are used instead of memory locations and registers to

refer to values

▪ operators are used to manipulate values

• but note that some operators are taken directly from the assembly

language, e.g. ++

C is a procedural language

o the programmer specifies an explicit sequence of steps to follow to produce a result

o the program is composed of procedures, also called a function, or routine, or subroutine

C programs are compiled rather that interpreted

o Compiler translates a program written in C into machine code that is directly executable by the

processor for which it is compiled

o For comparison, interpreted programs are executed by another program, called an interpreter.

They are not translated into binary instructions

C language was invented in 1972 by Dennis Ritchie at the Bell Telephone Laboratories for use with the

Unix operating system

o Was standardized in 1988, the standard is called ANSI C (for American National Standards Institute)

o In 1990, the ANSI C standard with some minor modifications was adopted by the International

Organization for Standardization. This version is called C90

o In this course we will study ANSI C

Overview (cont.)

Basic C program structure

/* Compute area of a circle

 INPUT: radius; OUTPUT: area, printed to the terminal */

#include <stdio.h>

#define PI 3.141576f

int main()

{

 float r; /* radius */

 float A; /* area and perimeter */

 printf("Enter radius: ");

 scanf("%f", &r);

 A = PI * r * r; /* area */

 printf("A=%f \n", A);

 return 0; /* terminate program return 0 to the operating system*/

}

• Comments

/* this is a comment. Not to be compiled. Ends with */

• pre-processor directives begin with #

o #include <stdio.h>

▪ Instructs the pre-processor to copy content of stdio.h (header file) into the source code

▪ stdio.h header file includes function declarations necessary to use standard I/O functions in C

▪ almost all programs will need to include this header file

▪ other examples of include files are math.h, stdlib.h, etc.

▪ <stdio.h> and other header files included in <> are located in some well-defined place in the file

system known to the compiler

▪ Header files located in the current directory or the directory provided to the compiler by the

user are enclosed in “”, e.g., “mydefs.h”

o #define PI 3.1416f

Directs the pre-processor to replace all instances of string PI in the file being pre-processed with the value
of 3.1416f

Compiling C Program C

Source and

Header Files

C Preprocessor

Compiler

Source Code

Analysis

Target Code

Synthesis

Symbol Table

Linker

Executable

Image

Library

Object Files

Preprocessor
• macro substitution
• conditional compilation
• “source-level” transformations
o output is still C
Compiler
• generates object file
o machine instructions
Linker
• combine object files
(including libraries)
into executable image
✓ gcc compiler – invoke all these tools

Variables in C

• int (long, long long, unsigned), can also use hex
representation 0xD

• float (double)

• char

• const - constant qualifier

• static - static qualifier

• Storage class: static vs. automatic

• Scope: local vs. global

#include<stdio.h>
int Global = 5;

int main()
{
 int Local = 1; /* local to main */
 printf("Global %d Local %d\n", Global, Local);
 {
 int Local = 2; /* local to this block */
 Global = 4; /* change global variable */
 printf("Global %d Local %d\n", Global, Local);
 }
 printf("Global %d Local %d\n", Global, Local);

 return 0;
}

Global 5 Local 1
Global 4 Local 2
Global 4 Local 1

Example: Global Variable

Output:

Operators

• Expression vs. Statement

• The Assignment Operator (=):

• ‘=‘ vs. ‘==‘

• Arithmetic Operators: *, +, -, /, % (modulus)

• Order of evaluation:

• precedence x = 2+3*4;

• associativity x = 2+3-4+5;

• parentheses x = a*(b + c)*d/2;

• Logical Operators:

• Bitwise Operators:

• Relational Operators:

Operators (cont.)

Increment/Decrement Operators: ++, -- (pre vs. post)
example 1: x = 4; y = ++x;

example 2: x = 4; y = x++;

What is the value of x and y after increment?
example 1

example 2

• Special operator (conditional):

Variable = condition ? value_if_true : value_if_false;

example: M = (x<y) ? 3 : 5

/* if x<y, M = ; otherwise, M= */

Expression with multiple operators

• Example: y = x & z + 3 || 9 – w % 6;

/* y = (x & (z + 3)) || (9 – (w%6)); */

Compound Assignment Operators:

• a += b; a = a + b;

Example
#include <stdio.h>

int main(){

/* declare integer variables a, b and c */

/* set a to 2, set b to a3*/

/* left shift b by a number of bits */

/* perform bitwise AND on a and b, store the

result to c */

/* print c */

return 0;

}

Example
/* Compute perimeter of a circle; Given PI=3.141576

 INPUT: radius; OUTPUT: area, printed to the terminal */

//preprocessor directives

int main()

{

 // declare variable

 // prompt user to give input

 // get input

/* calculate perimeter */

 //print result

 return 0; /* terminate program return 0 to the operating system*/

}

	Slide 1
	Slide 2
	Slide 3: Introduction to C
	Slide 4
	Slide 5: Basic C program structure
	Slide 6
	Slide 7: Compiling C Program
	Slide 8: Variables in C
	Slide 9: Example: Global Variable
	Slide 11: Operators
	Slide 12: Operators (cont.)
	Slide 13
	Slide 17: Example
	Slide 18: Example

