
ECE 220 Computer Systems & Programming

Lecture 3: Stack Data Structure and Stack Operations
January 23, 2024

• MP1 due Thursday by 10pm

• Mock quiz next week.

Stack

1 4

3

2

1

3

2

1

Initial State After
One Push

After Three
More Pushes

After
One Pop

4

Stack – an Abstract Data Type

• Stack: A LIFO (Last-in First-out) storage structure
• The first thing you put in is the last thing you take out.
• The last thing you put in is the first thing you take out.

• This operation on the data is what defines a stack, not the specific
implementation.

• Abstract Data Type (ADT): A storage mechanism defined by the
operations performed on it.

Example
• Stack (LIFO)
• Queue (FIFO: First-in First-out)
• Linked list
• Tree

Hardware Implementation of Stack

• Data items move between operations.

problem?

Stack Implementation using memory– from textbook

• Data items do NOT move in memory.

• Instead of moving the data, track the top of the stack.

• By convention, R6 holds the top of stack (TOS) pointer.

• When item added, TOS moves towards x0000

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / / TOP

/ / / / / /

/ / / / / /

/ / / / / /

#1

/ / / / / /

TOP

#4

#3

#2

#1

/ / / / / /

TOP #4

#3

#2

#1

/ / / / / /

TOP

Initial State After
One Push

After Three
More Pushes

After
Two Pops

x4000 x3FFF x3FFC x3FFER6 R6 R6 R6

x3FFC
x3FFD
x3FFE
x3FFF
x4000

They are still in memory
but cannot access
by stack anymore

Another Implementation of stack - used in MP

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

TOP

/ / / / / /

/ / / / / /

/ / / / / /

#1

/ / / / / /

TOP

#4

#3

#2

#1

/ / / / / /

TOP

#4

#3

#2

#1

/ / / / / /

TOP

Initial State After
One Push

After Three
More Pushes

After
Two Pops

x3FFF x3FFE x3FFB x3FFDR6 R6 R6 R6

x3FFC
x3FFD
x3FFE
x3FFF
x4000

TOS is pointing “Next available spot”

Exercise:

Worksheet

Stack Operation

1.

2.

3.

4.

Basic PUSH and POP code

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / / TOP

Initial State

STACK_START

STACK_END

PUSH STR R0, R6, #0 ; store data to TOS

 ADD R6, R6, #-1 ; decrement TOS pointer

POP ADD R6, R6, #1 ; increment TOS pointer

 LDR R0, R6, #0 ; load data from TOS

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

#18

TOP

After
 One Push

/ / / / / /

#12

#5

#31

#18

TOP

After Three
More Pushes

/ / / / / /

#12

#5

#31

#18

TOP

After
One Pop

*When item added, TOS moves closer to x0000.

R0: input data

R0: output data

Stack Implementation

Implementation of PUSH Subroutine

;R3: STACK_END
;R6: STACK_TOP

;overflow?
;Check if STACK_TOP = STACK_END - 1
;Or check if STACK_TOP - (STACK_END - 1) = 0

Implementation of POP Subroutine

;R3: STACK_START
;R6: STACK_TOP

;underflow?
;Check if STACK_TOP = STACK_START
;Or check if STACK_TOP - STACK_START = 0

POP Subroutine

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Stack – an Abstract Data Type
	Slide 5: Hardware Implementation of Stack
	Slide 6: Stack Implementation using memory– from textbook
	Slide 7: Another Implementation of stack - used in MP
	Slide 8: Exercise:
	Slide 9: Stack Operation
	Slide 11: Basic PUSH and POP code
	Slide 16: Stack Implementation
	Slide 18: Implementation of PUSH Subroutine
	Slide 19
	Slide 20
	Slide 21
	Slide 23: Implementation of POP Subroutine
	Slide 24
	Slide 25
	Slide 26
	Slide 29

