
ECE 220 Computer Systems & Programming

Lecture 3: Stack Data Structure and Stack Operations
January 23, 2024



• MP1 due Thursday by 10pm 

• Mock quiz next week.
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Stack – an Abstract Data Type

• Stack: A LIFO (Last-in First-out) storage structure
• The first thing you put in is the last thing you take out.
• The last thing you put in is the first thing you take out.

• This operation on the data is what defines a stack, not the specific 
implementation. 

• Abstract Data Type (ADT): A storage mechanism defined by the 
operations performed on it.

Example
• Stack (LIFO)
• Queue (FIFO: First-in First-out)
• Linked list
• Tree



Hardware Implementation of Stack

• Data items move between operations.

problem?



Stack Implementation using memory– from textbook

• Data items do NOT move in memory.

• Instead of moving the data, track the top of the stack.

• By convention, R6 holds the top of stack (TOS) pointer.

• When item added, TOS moves towards x0000  
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Another Implementation of stack - used in MP 
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TOS is pointing “Next available spot”



Exercise:

Worksheet



Stack Operation

1.
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Basic PUSH and POP code
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PUSH  STR R0, R6, #0 ; store data to TOS

  ADD R6, R6, #-1 ; decrement TOS pointer

POP  ADD R6, R6, #1 ; increment TOS pointer

  LDR R0, R6, #0 ; load data from TOS
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*When item added, TOS moves closer to x0000.

R0: input data

R0: output data



Stack Implementation



Implementation of PUSH Subroutine



;R3: STACK_END
;R6: STACK_TOP

;overflow?
;Check if STACK_TOP = STACK_END - 1
;Or check if STACK_TOP - (STACK_END - 1) = 0







Implementation of POP Subroutine



;R3: STACK_START
;R6: STACK_TOP

;underflow?
;Check if STACK_TOP = STACK_START
;Or check if STACK_TOP - STACK_START = 0





POP Subroutine
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