
ECE 220 Computer Systems & Programming

Lecture 2 – Repeated Code: TRAPs and Subroutines

Last Class Example (memory Mapped I/O)

2

Drawbacks
➢ Requires knowledge of the hardware
➢ One could mess up hardware registers

Solution: TRAP Service Routine

– It is desirable to provide service routines or
system calls (part of operating system) to safely
and conveniently perform low-level, privileged
operations

• User program invokes system call

• Operating system code performs operation

• Returns control to user program

3

TRAP Vector Table for LC3

vector address symbol routine

…

x20 x…. GETC read a single character (no echo)

x21 x…. OUT output a character to the monitor

x22 x…. PUTS write a string to the console

x23 x…. IN print prompt to console, read and echo

character from keyboard

X24 x…. PUTSP write a string to the console; two chars per

memory location

x25 x…. HALT halt the program

…

Look-up table decouples names of subroutines
(GETC) from the location of its implementation
in memory

How to make this idea work?

• The actual code of the service
routine is referred indirectly

• Mechanism for invocation
• TRAP Instruction, e.g., TRAP x23

• TRAP vector (8 bits)

• How to find address service
routine?

User program invokes TRAP subroutine; OS code performs operation; Returns control to user program

1

opcode

1 1 1 0 0 0 0

unused trap vector

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRAP

TRAP Mechanism

x0463

0000 0100 0110 0011

TRAP Mechanism

• PC is loaded with the address of the first instruction of the corresponding service routine
o MAR←ZEXT(trapvector)
o MDR←MEM[MAR]
o R7←PC (note that R7 is loaded with the current content of the PC to provide a way
 back to the user program)
o PC←MDR

• Once the service routine is done, control is passed back to the user program using RET
instruction, here it does the same operation as JMP R7 instruction

o PC←R7 (restore old PC to return to the user program)

1

opcode

1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

R7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RET

o must make sure that service routine does not change R7, or we won’t know where to return
o also, must make sure R7 does not have a useful value that will be overwritten in the process of calling a
TRAP

LC3 Demo

TRAP Example (Needs special attention)

.ORIG x3000

AND R0, R0, #0

ADD R0, R0, #5 ;init R0 and set it to 5

LD R7, COUNT ;Initialize to 10

IN ;same as ‘TRAP x23’

ADD R0, R0, #1 ;increment R0

ADD R7, R7, #-1 ;decrement COUNT

HALT

.END

COUNT .FILL #10

➢ Question: What could go wrong?

➢ What are the values in R0 and R7 before and after IN statement?

6

Remedy: Save & Restore Registers

We must save the value of a register if its value will be destroyed by a subsequent
action (e.g. service routine) and we will need to use the value after that action.

Two Conventions for Saving & Restoring Registers:

1. Caller-saved (caller knows what it needs later, but may not know what gets altered

by callee routine)

-

-

2. Callee-saved (callee knows what it alters, but does not know what will be needed

by calling routine)

-

-

Service Routine Features

Three main features of Service routines (TRAP):

• Abstract away the system-specific details from the user program

• Write frequently-used code just once

• Protect system recourses from malicious/inept programmers

Subroutines:
User (non-system) defined routines, i.e. subroutines perform the same functions
as service routine but without accessing privileged area of memory.

When we use subroutines?

13

Observation

Example problem: Compute y=3x3-
6x2+7x for any input x > 0

Programs have lots of repetitive
code fragments

start

Get input

X ← MEM[x4000]

R4 ← X2

R5 ← X3

R5 ← 3X3

R4 ← 6X2

R3 ← 7X

R6 ← 3X3 - 6X2

R6 ← (3X3 - 6X2) + 7x

Store output

stop

Multiply

Multiply

Multiply

Multiply

Multiply

Add

Add

; multiply R0 R1 * R2
MULT AND R0, R0, #0 ; R0 = 0
LOOP ADD R0, R0, R2 ; R0 = R0 + R2

ADD R1, R1, #-1 ; decrease counter
BRp LOOP

Implementation Option

;; LC-3 Assembly Program

.ORIG x3000

LDI R3, Xaddr; R3 x

ADD R1, R3, #0;

; Multiply R4 R1 * R3 (x2)

...

...

; Multiply R5 R4 * R3 (x3)

...

; Multiply R5 R5 * 3 (3x3)

...

; Multiply R4 6 * R4

start

Get input

R3 ← MEM[x4000]

R4 ← X2

R5 ← X3

R5 ← 3X3

R4 ← 6X2

R3 ← 7X

R6 ← 3X3 - 6X2

R6 ← (3X3 - 6X2) + 7x

Store output

stop

Multiply

Multiply

Multiply

Multiply

Multiply

Add

Add

Issues ?

Idea

Idea

• User invokes or calls subroutine

• Subroutine code performs operation / task

• Returns control to user program with no other unexpected changes

Piece of code /
Subroutine / Trap

service routine

My program

input

output

JSR and JSRR

0

opcode

1 0 0 1

PCoffset11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSR

0

opcode

1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSRR

BaseR

R7←PC
If (IR[11] == 0) PC←BaseR
Else PC←PC+SEXT(IR[10:0])

1

opcode

1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

R7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RET

RET ≡ JMP R7
PC R7

JSR Example:

JSRR Example:

JSR and JSRR – When do we use JSRR?

0

opcode

1 0 0 1

PCoffset11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSR

0

opcode

1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSRR

BaseR

R7←PC
If (IR[11] == 0) PC←BaseR
Else PC←PC+SEXT(IR[10:0])

1

opcode

1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

R7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RET

RET ≡ JMP R7
PC R7

Subroutine is in a separate file

NESTED SUB ROUTINE:

Check whether the result of
C=A-B, is

ODD or EVEN?

Anything wrong??

Corrected Code:
Save R7 before calling ODD_EVEN

 and

Restore R7 after return from
ODD_EVEN

	Slide 1
	Slide 2: Last Class Example (memory Mapped I/O)
	Slide 3: Solution: TRAP Service Routine
	Slide 4: TRAP Vector Table for LC3
	Slide 5: How to make this idea work?
	Slide 6: TRAP Mechanism
	Slide 7: TRAP Mechanism
	Slide 8: LC3 Demo
	Slide 10
	Slide 11
	Slide 13: Service Routine Features
	Slide 14: Observation
	Slide 15: Implementation Option
	Slide 16: Idea
	Slide 17: Idea
	Slide 18: JSR and JSRR
	Slide 19: JSR Example:
	Slide 20: JSRR Example:
	Slide 21: JSR and JSRR – When do we use JSRR?
	Slide 22: Subroutine is in a separate file
	Slide 23
	Slide 24
	Slide 25
	Slide 26

