
ECE 220: Computer Systems & Programming

Lecture 3: Repeated code- TRAPs and Subroutines
Thomas Moon

January 23, 2024

Previous lecture
• I/O basics, I/O types
• Input from keyboard/Output to monitor
• Memory-mapped I/O, Handshaking (ready-bit), Polling

2

Today’s lecture
• TRAPs: GETC, IN, OUT, PUTS, PUTSP, HALT
• Subroutines: JSR, JSRR
• Demystify R7

3

POLL LDI R1, KBSR_ADDR
BRzp POLL
LDI R0, KBDR_ADDR

POLL2 LDI R1, DSR_ADDR
BRzp POLL2
STI R0, DDR_ADDR

KBSR_ADDR .FILL xFE00
KBDR_ADDR .FILL xFE02
DSR_ADDR .FILL xFE04
DDR_ADDR .FILL xFE06

From Lec 2

GETC
OUT

Input/Output routines by USER

by TRAP

TRAP x20
TRAP x21

or

User Program Accessing I/O

• Problem
• It requires too many specific details for programmer

(device regs, memory-mapped, handshaking protocols,
etc)

• Security issue: I/O resources shared with multiple
programs

• Solution: make this part of OS
Service routines or system calls

1. User program invokes system call
2. OS code performs operation
3. Returns control to user program

• In LC-3, this is done through the TRAP mechanism. 4

x0000

Interrupt Vector Table
x01FF
x0200

x2FFF
x3000

xFDFF
xFE00

xFFFF

Trap Vector Table

Device Register Addresses

Supervisor Stack
Operating System and

Available for
User Programs

x00FF
x0100

x0000

TRAP Instruction

• Trap vector (8-bit index)
• Table of service routine addresses (x0000-x00FF)
• Zero-extended into 16-bit memory address
• R0 is used to store the return value or to pass the argument.

5

vector symbol routine

x20 GETC read a single character into R0 (no echo)

x21 OUT output a character in R0 to the monitor

x22 PUTS write a string to the console (addr in R0)

x23 IN print prompt to console, read and echo
character from keyboard (R0)

x24 PUTSP write a string to the console (2 characters
per memory location) (addr in R0)

x25 HALT halt the program

PUTS vs PUTSP

6

.ORIG x3000
LEA R0, LB
PUTS
HALT
LB .STRINGZ "abcd"
.END

.ORIG x3000
LEA R0, LB
PUTSP
HALT
LB .FILL x6261
.FILL x6463
.FILL x0
.END

They both prints
abcd

Q. How many different TRAP routines can be
implemented?

7

256

TRAP Mechanism Operation

8

1. Lookup starting address.
2. Transfer to service routine.
3. Return (RET = JMP R7).TRAP x23 (or IN)

Trap Vector Table

RET (or JMP R7)

x4000

x4001

1. R7←PC (x4001)
2. MAR←x0023
3. MDR←x04A0

PC←MDR (x04A0)

PC←R7 (x4001)

*The actual value of TVT is subjective to
the simulator.

LC-3 TRAP Mechanism
1. TRAP instruction

• used by user program to transfer control to OS
• 8-bit Trap vector names one of

256 service routines
2. Table of starting addresses

• stored at x0000 through x00FF in memory
• called Trap Vector Table (or System Control

Block)
3. Set of service routines

• part of OS
• start at arbitrary addresses (within OS)
• LC-3 is designed to have upto 256 routines

4. Linkage
• return control back to user program

9RET (a.k.a JMP R7)

TRAP example

10

Describe the program.

.ORIG x3000
LD R0, CAP_A
LD R1, CNT

LOOP
OUT
ADD R1, R1, #-1
BRp LOOP
HALT

CNT .FILL #3
CAP_A .FILL x41

.END

TRAP example

11

Describe the program.

.ORIG x3000
LD R0, CAP_A
LD R7, CNT

LOOP
OUT
ADD R7, R7, #-1
BRp LOOP
HALT

CNT .FILL #3
CAP_A .FILL x41

.END

à If we have to use R7,
what will be the solution?

TRAP example

12

Describe the program.

.ORIG x3000
LD R0, CAP_A
LD R7, CNT

LOOP
ST R7, SAVE_R7
OUT
LD R7, SAVE_R7
ADD R7, R7, #-1
BRp LOOP
HALT

CNT .FILL #3
CAP_A .FILL x41
SAVE_R7 .FILL x0 ;#3->#2

.END

à If we have to use R7,
what will be the solution?

Saving and Restoring Registers

•Called routine – “callee-save”
• Before start, save any registers that will be altered
• Before return, restore the registers

•Calling routine - “caller-save”
• Save registers destroyed by called routines, if values

needed later
• Save R7 before any TRAP
• Save R0 before IN or GETC (what about OUT or PUTS?)

• Or avoid using those registers

13

main calls TRAP
TRAP is called by main

TRAP: Callee-save Example

14

R1 is callee-saved because it will be changed.

Subroutines

• Service routines (TRAP) provides 3 main functions:
• Shield programmers from system-specific details
• Write frequently-used code just once
• Protect system resources from malicious/clumsy programmers

• A subroutine is a program fragment that:
• performs a well-defined task
• is called by another user program
• returns control to the calling program when finished
• lives in user space (not part of OS, not concerned with protecting

hardware resources)
15

JSR/JSRR – Jump to Subroutine

• Jumps to a location (like a branch but unconditional)
and saves current PC (addr of next instruction) in R7

• To return form a subroutine, use RET (just like TRAP).
16

TEMP = PC
if (bit[11] == 0)

PC = baseR;
else

PC = PC + SEXT(PCoffset11);
R7 = TEMP;

JSR Example

17

.ORIG x3000
LD R1, VAL1
LD R2, VAL2
LD R3, VAL3
JSR ADD3
HALT

; ADD3 subroutine: R0 = R1 + R2 + R3
ADD3

AND R0, R0, #0
ADD R0, R0, R1
ADD R0, R0, R2
ADD R0, R0, R3
RET

VAL1 .FILL #2
VAL2 .FILL #3
VAL3 .FILL #4

.END

JSRR Example

18

.ORIG x3000
LD R1, VAL1
LD R2, VAL2
LD R3, VAL3
LEA R4, ADD3
JSRR R4
HALT

; ADD3 subroutine: R0 = R1 + R2 + R3
ADD3

AND R0, R0, #0
ADD R0, R0, R1
ADD R0, R0, R2
ADD R0, R0, R3
RET

VAL1 .FILL #2
VAL2 .FILL #3
VAL3 .FILL #4

.END
Ø When do you use JSRR?

To use a subroutine,

• A programmer must know
1. its address (or at least a label)
2. its function
3. its arguments (where to pass data in, if any)

Example:
• In OUT service routine, R0 is the character to be printed.
• In PUTS service routine, R0 is the address of string to be printed.

4. its return value (where to get computed data, if any)
• In GETC service routine, character read from the keyboard is returned in R0.

19

Saving/Restoring Registers in Subroutines

1. Generally, use callee-save strategy, except for return values
2. Save anything that the subroutine will alter internally
3. It’s good practice to restore incoming arguments to their original

values.

20

Nested subroutine –> Save R7

Example: Subtraction

21

.ORIG x3000
LD R2,Value1 ;load a value into R2
LD R3,Value2 ;load a value into R3
JSR SUBTR ;jump to subroutine
HALT

;NEG: R6 = -R0
NEG ST R0,SaveR0_NEG

NOT R0,R0
ADD R6,R0,#1
LD R0,SaveR0_NEG
RET

;SUBTR: R1 = R2 - R3
SUBTR ST R0, SaveR0_SUB

ST R6, SaveR6_SUB
ADD R0, R3, #0
JSR NEG
ADD R1, R2, R6
LD R0, SaveR0_SUB
LD R6, SaveR6_SUB
RET

-What problem we have?

Example: Subtraction

22

.ORIG x3000
LD R2,Value1 ;load a value into R2
LD R3,Value2 ;load a value into R3
JSR SUBTR ;jump to subroutine
HALT

;NEG: R6 = -R0
NEG ST R0,SaveR0_NEG

NOT R0,R0
ADD R6,R0,#1
LD R0,SaveR0_NEG
RET

;SUBTR: R1 = R2 - R3
SUBTR ST R0, SaveR0_SUB

ST R6, SaveR6_SUB
ADD R0, R3, #0
JSR NEG
ADD R1, R2, R6
LD R0, SaveR0_SUB
LD R6, SaveR6_SUB
RET

x3003 -------------à

x300D -----------à

1. R7 = x3003

2. R7 = x300D à R7 is overwritten

3. R7 = x300D à Never return to x3003

.ORIG x3000
LD R2,Value1 ;load a value into R2
LD R3,Value2 ;load a value into R3
JSR SUBTR ;jump to subroutine
HALT

;NEG: R6 = -R0
NEG ST R0,SaveR0_NEG

NOT R0,R0
ADD R6,R0,#1
LD R0,SaveR0_NEG
RET

;SUBTR: R1 = R2 - R3
SUBTR ST R0, SaveR0_SUB

ST R6, SaveR6_SUB
ST R7, SaveR7_SUB
ADD R0, R3, #0
JSR NEG
ADD R1, R2, R6
LD R0, SaveR0_SUB
LD R6, SaveR6_SUB
LD R7, SaveR7_SUB
RET 23

1. R7 = x3003

2. R7 = x300D

3. R7 = x300D

4. R7 = x3003

x300D -----------à

x3003 -------------à

à Return to x3003

11:16:50 From to Thomas Moon(Direct Message):

Is it only possible to read in one character at a time, or is there a way to read in a string?

A. Assuming you asked about the keyboard input, you can only read one character at a time unless you
implent a buffer subroutine. If you are talking about reading them from the memory, you can read a string
by PUTS or PUTSP.

11:16:58 From to Thomas Moon(Direct Message):

Is IN printing a character then a new character is stored after an input? or is it the same character its just
read and echoed?

A. It first stores a character from the keyboard (GETC), then prints out to the monitor (OUT).

11:25:23 From to Thomas Moon(Direct Message):

Is there a function similar to .STRINGZ which encodes two ascii codes in each memory location?

A. We need to use .FILL to encode two characters.

11:26:56 From to Thomas Moon(Direct Message):

How do we store the memory for PUTSP? do we have to do it manually?

11:38:41 From to Thomas Moon(Direct Message):

does trap automatically do return

A. They includes RET at the end of their service routines. So, yes, they will return and you don’t need to code
it.

11:41:31 From to Thomas Moon(Direct Message):

Does OUT automatically convert the x41 to "A"?

A. Yes, it reconizes the data as an ascii code.

11:49:04 From to Thomas Moon(Direct Message):

why can't LC3 incorporate this into the TRAP routines so users don't have to work around it?

A. Assuming the question was about Caller-save. Because LC3 is an assembly language, it does not support
many user-friendly stuff. In C/C++, we don’t need to worry about it because the compiler automatically
adds the stuffs for us.

11:54:36 From to Thomas Moon(Direct Message):

is callee-save already done for us by the TRAP routines? Or do we have to program them in?

A. TRAP includes caller-save within the service routines. BTW, a user cannot modify TRAP service routines
(they are in OS!)

11:55:54 From to Thomas Moon(Direct Message):

is the difference between callee and caller that one has the store and restore in the trap routine and the
other is done in the user program?

A. It’s not about TRAP or user program. TRAP itself can
do both as well as the user program. PUTS is a good
example that does both caller-save and callee-save.
PUTS calls another routine, OUT. Therefore, it does
“caller-save” on R7 (nested subroutine). PUTS also
does “callee-save” on R0 and R1 because they were
used and modified in the routine.

11:56:25 From Garv Khera to Everyone:

callee save doesn’t work on R7 right?
11:56:27 From Jizhou Hu to Everyone:

Why do not we also do callee-save to R7? So we can use R7 as normal?

1 .ORIG x3000
2
3 AND R7, R7, #0
4 ADD R7, R7, #1
5 ST R7, SAVE_R7
6 JSR FOO
7 LD R7, SAVE_R7
8 HALT
9
10 FOO
11 ST R7, SAVE_R7_FOO
12 ;pretend using R7 for something
13 AND R7, R7, #0
14 ;
15 LD R7, SAVE_R7_FOO
16 RET
17 SAVE_R7_FOO .FILL #0
18 SAVE_R7 .FILL #0
19 .END

A. We can do “callee-save” on R7. Line 5 and 7 is doing
“caller-save” on R7 (the main saves/retores R7
because it will call FOO). By the caller-save, R7 will
recover the value #1.
Line 11 and 15 is doing “callee-save” on R7 (the callee,
FOO, saves and restores R7 because it will use R7 for
something. By the callee-save, R7 will recover the
return address to HALT.

12:01:43 From Ayush Barik to Everyone:

does RET return you to the main code?
12:02:10 From Ryan Bahary to Everyone:

RET is a trap command that sets the PC back to wherever you called the "JSR"

A. Good question and good response except RET is not a TRAP command, it’s one of the LC3 instructions (it has an opcode).

12:02:15 From Micah Wehler to Everyone:

Are subroutines basically just functions? And then JSR and JSRR are used to call them in a sense?

A. Yes, you can think that way.

12:04:21 From Ayush Barik to Everyone:

during the midterms will we be given a opcode table like in ece120?

A. I remember we gave a opcode table, although it may not be that helpful.

12:09:20 From to Thomas Moon(Direct Message):

are there any situations where we have to use jsrr over jsr

A. When the command JSR is too far away from the starting address of the subroutine. JSR uses 11 signed bits for
PC offset, which can cover +1024 to -1023 memory address. Beyond that, use JSRR (very unlikely happens in this
course)

12:15:21 From Ayush Barik to Everyone:

what is the purpose of R0, SaveR0_NEG? we dont need it right?

NEG ST R0,SaveR0_NEG
NOT R0,R0
ADD R6,R0,#1
LD R0,SaveR0_NEG
RET

A. Callee-save R0 because NEG will modify R0 in the code (for educational purpose).

Of course, we can avoid changes in R0 like this…
NEG

NOT R6,R0
ADD R6,R6,#1
RET

This code is more optimal since we use less memory space and less number of instructions.

