
ECE 220: Computer Systems & Programming

Lecture 25: Interrupts and Exceptions
Thomas Moon

April 23, 2024

• ICES form:
If 70% of students complete ICES, the whole class get 1% credit

From Lec2 : Input from keyboard

When a character is typed in …

1. Its ASCII code is placed in bits [7:0] of KBDR (bits [15:8] are always zero)

2. The “ready bit” (KBSR[15]) is set to one

3. Keyboard is disabled -- any typed characters will be ignored

When KBDR is read …
1. KBSR[15] is set to zero
2. Keyboard is enabled

KBSR

KBDR
15 8 7 0

1514 0

Keyboard data (8 bits)

Ready bit

From Lec2 : I/O Types

3. Who controls the interaction?

Polling Interrupt-Driven
• Processor controls the

interaction
• I/O controls the

interaction

• Keep asking whether
the I/O data is ready

• Processor is
interrupted by
announcement from
I/O• “Are you ready? Are

you ready? …”
• “Wake me up when you

are ready.”

Basic Input Routine (by polling)

1. Load KBSR to a register (R0-R7)
2. Check its MSB by sign
à Z or P: repeat 1
à N: Load KBDR to a register

Ø Read a single character from keyboard.

Basic Output Routine (by polling)

1. Load DSR to a register (R0-R7)
2. Check its MSB sign
à Z or P: repeat 1
à N: Store a character to DDR

Ø Display a single character to monitor.

GETC/OUT vs input.asm & output.asm

Polling vs Interrupt-driven I/O

1314

Interrupt signal to the processor

15

Interrupt signal to the processor

0

KBSR

131415 0

DSR

KBSR

KBDR
15 8 7 0

1514 0

Ready bit Ready bit

IE bit (Interrupt Enable)

• IE = 0
• I/O device will NOT be able to interrupt
• Polling

• IE = 1
• Interrupt-driven I/O enabled
• Interrupt request generated as soon as Ready bit

sets (a key typed)

Ready bit: set by keyboard
IE bit: set by software

Flow of Interrupt-driven I/O

Stage1: Initiate the interrupt

Stage2: Service the interrupt

Stage3: Return from the interrupt

☆Stage1.5: Prepare/Transfer

TRAP/Subroutine vs Interrupt

11

• You don’t know “WHEN” an interrupt
will happen.

• “Caller-save” is not possible
i.e. R7 cannot be recovered using the
old approach.

• Supervisor Stack + Special Internal
Register

Stage1: Initiate

• An I/O device generates an interrupt signal (INT) to indicate that I/O
device is ready with a new I/O operation (e.g. a new character has
been entered on the keyboard)

• 3 conditions to interrupt the processor
1. The device must want to interrupt (Ready bit in KBSR)
2. The device must have the right to request (IE bit in KBSR)
3. The request must be more urgent than the processor’s current task

(priority level: PL0-PL7 (higher is more urgent), e.g. keyboard is PL4)

Generate INT Signal

15 1514 14 14

1 1

Priority encoder

A
B

A > B
?

3

3

1

INT

PL of current program

PL0 device PL1 device PL7 device

15

Stage1: Initiate

*Priority encoder:
Selects the highest priority request from all devices

When INT is checked?
• If INT = 0

1. Return to FETCH phase to start the
next instruction

• If INT = 1
1. Prepare the interrupt
2. Transfer to Interrupt Service

Routine (ISR)

EA

OP

EX

S

F

D

INT?
Interrupt
Service
Routine

NO

YES

Fetch

Decode

Evaluate
Address

Fetch
Operands

Execute

Store Result

When INT is checked?
Q. If INT is issued in the middle of
the instruction cycle,
i.e. ADD R0, R1, R2, will the result
be updated before serving ISR?
A. Yes
B. No

EA

OP

EX

S

F

D

INT?
Interrupt
Service
Routine

NO

YES

Fetch

Decode

Evaluate
Address

Fetch
Operands

Execute

Store Result

Stage1.5: Prepare/Transfer
1. (Prepare) The state of the interrupted program must be saved to

resume later.
2. (Transfer) The state of the ISR must be loaded to begin the service.

Condition CodePriority LevelPrivileged Mode
0: Privileged (Supervised)
1: Unprivileged (User)

<- If needed, they will be saved by ISR
 (callee-save)

State of a program
• Contents of all the general purpose registers (R0-R7)
• PC
• PSR (Processor Status Register)

Where to save the state?
– Supervisor Stack

Supervisor Stack
A special region of memory used as the stack for ISR

• Supervisor Stack Pointer (SSP)
• Saved.SSP: Internal register to store SSP

User Stack
A stack accessed by user programs

• User Stack Pointer (USP)
• Saved.USP: Internal register to store USP

• Access both stacks using R6 as the stack pointer.
• When switching from User mode to Supervisor mode, save R6 to Saved.USP

(because R6 gets automatically corrupted) .

Stage1.5: Prepare/Transfer
x0000

Interrupt Vector Table
x01FF
x0200

x2FFF
x3000

xFDFF
xFE00

xFFFF

Trap Vector Table

Device Register Addresses

Supervisor Stack
Operating System and

Available for
User Programs

x00FF
x0100

x0000

Detail Steps

1. If PSR[15]=1 (user),
Saved.USP = R6, then R6 = Saved.SSP.
(transfer from User Stack to Supervisor Stack)

2. Push PSR and PC to Supervisor Stack.
3. Set PSR[15] = 0 (Supervisor mode)

 PSR[10:8] = PL of interrupt being served (e.g. keyboard = PL4)
 PSR[2:0] = 0

4. Set MAR = x01vv, where vv = 8-bit interrupt vector (INVT) from interrupting
device (e.g. keyboard = x80 -> MAR=x0180)

5. Load memory, MDR = MEM[x01vv] .
6. Set PC = MDR. Now the first instruction of ISR will be fetched.

*TRAP vector table: x0000 - x00FF
 Interrupt vector table: x0100 – x01FF

Stage1.5: Prepare/TransferINT = 1 à à ISR

Stage1.5: Prepare/Transfer

Summary

Save R6 in Saved.USP
– only when it was in user mode

Update R6 = Saved.SSP

Push old PSR and PC in Supervised Stack

Update new PSR and PC

Stage2: Service

• PC contains the starting address of the ISR.
• Callee-save for general purpose registers.
• The ISR will execute, and the requirements of the I/O device will be

served.
• For example, copy KBDR into some memory location.

Stage3: Return

• RTI (Return from Interrupt)

1. Pop PC from Supervisor Stack (PC = M[R6], R6 = R6 +1)
2. Pop PSR from Supervisor Stack (PSR = M[R6], R6 = R6 +1)
3. If PSR[15] = 1, Saved.SSP = R6 and then R6 = Saved.USP

(If transferring back to user mode, save SSP and restore USP)

• RTI is a privileged instruction.
• Can only be executed in Supervisor mode.
• If executed in User mode, causes an exception.

Service routine
for device B

Service routine
for device C

Program A

RTI

RTI x6210

x6202

x6200

x3010

x3006

x3000

x6300

x6315

ADD

AND

1. Before ADD

2. INT detected at x3006 (Stage1 for device B)

PL
A<B<C 3. Prepare/Transfer

(device B)

Interrupt vector table
Addr Data
x01F1 x6200
x01F2 x6300

INTV
Device B = xF1
Device C = xF2

4. Service ISR
(device B)

5. INT detected at x6202 (Stage1 for device C)

6. Prepare/Transfer
(device C)

7. Service ISR
(device C)

8. Return
(device C)

8. Return
(device C)

9. Return
(device B)

9. Return
(device B)

Saved.USP

Example Interrupt Code – Lc3web
Interrupt vector table
Addr Data
x01F1 x6200
x01F2 x6300
x0180 MyISR

INTV
Device B = xF1
Device C = xF2
keyboard = x80

https://github.com/tmoon-illinois/ece220_sp24/blob/main/lec25/interrupt_simple.asm

https://github.com/tmoon-illinois/ece220_sp24/blob/main/lec25/interrupt_simple.asm

Q. Suppose a device A initiates an interrupt. The
interrupt vector of device A is x30 and its ISR starts at
x1200. What can you tell about the contents of any
memory location?

A. The content of address x0030 is x1200.
B. The content of address x0130 is x1200.
C. The content of address x1200 is x0030.
D. The content of address x1200 is x0130.
E. You cannot determine anything about the memory by the

above information.

Exceptions: Internal Interrupt

• When something unexpected happens inside the processor, it may cause an
exception.

• In LC3,
• Privilege mode violation (RTI in user mode)
• Executing an illegal opcode (bits[15:12] = x1101)

• Other examples:
• Divide by zero
• Accessing an illegal memory address

• Handled just like an interrupt
• Vector is determined internally by type of exception
• Priority level does not change

