
ECE 220: Computer Systems & Programming

Lecture 21: Intro to C++: Inheritance and Polymorphism
Thomas Moon

April 9, 2024

Reference
• Alias for a variable/object.
• A variable can be declared as reference by ‘&’ in the declaration.
• A reference must be initialized when declared.

 int val = 10;

 int *ptr = &val;// & to get address
 int &ref = val;// & to declare reference

 cout<<val<<endl;
 cout<<*ptr<<endl;
 cout<<ref<<endl;

 ref = 20;
 cout<<val<<endl;

 val = 30;
 cout<<ref<<endl;

Pass by Pointer(address) vs by Reference

void swap(int *a, int *b){
 int temp = *a;
 *a = *b;
 *b = temp;

}

void swap(int &a, int &b){
 int temp = a;
 a = b;
 b = temp;

}

int val1, val2;
val1 = 10, val2 = 20;
swap(&val1, &val2);

 swap(val1, val2);
Which function
is called?

Which function can possibly
cause “segment fault”?

Arrays & Pointers & Objects

• Array of objects

• Array of pointers to objects

• Reference to objects

 Person p[2] = {Person("Alice", 20), Person("Bob", 22) };
 p[0].ShowData();
 p[1].ShowData();

 Person *ptr[2];
 ptr[0] = new Person("Alice",20);
 ptr[1] = new Person("Bob",22);
 ptr[0]->ShowData();
 ptr[1]->ShowData();

 Person &ref = *ptr[0];
 ref.ShowData();

 Person &ref = p[0];
 ref.ShowData();

C++

• Object Oriented Programming (OOP)
Programming style associated with class and objects and other
concepts like

• Encapsulation
• Inheritance
• Polymorphism
• Abstraction

Inheritance – Why?

class Airplane{
private:
 int passenger;
 double baggage;
 int crew_man;
public:
 Airplane(int person, double weight, int crew){
 passenger = person;
 baggage = weight;
 crew_man = crew;
 }
 void Ride(int person){
 passenger += person;
 }
 void Load(double weight){
 baggage += weight;
 }
 void TakeCrew(int crew){
 crew_man += crew;
 }
};

class Train{
private:
 int passenger;
 double baggage;
 int length;
public:
 Train(int person, double weight, int len){
 passenger = person;
 baggage = weight;
 length = len;
 }
 void Ride(int person){
 passenger += person;
 }
 void Load(double weight){
 baggage += weight;
 }
 void AddLength(int len){
 length += len;
 }
};

‘Airplane’ and ‘Train’ share many data and functions!

base class

derived class

class Vehicle{
private:
 int passenger;
 double baggage;
public:
 void Ride(int person){passenger += person;}
 void Load(double weight){baggage += weight;}
 int getPassenger(){ return passenger;}
 double getBaggage(){ return baggage;}
};

class Airplane : public Vehicle{
private:
 int crew_man;
public:
 Airplane(int crew) {crew_man = crew;}
 void TakeCrew(int crew){crew_man += crew;}
 int getCrew(){ return crew_man;}
 void ShowData(){
 cout<<"<<Airplane>> "<<endl;
 cout<<"passenger:"<<getPassenger()<<endl;
 cout<<"baggage:"<<getBaggage()<<endl;
 cout<<"crew man:"<<getCrew()<<endl;
 }
};

1. Airplane class is inherited from Vehicle class.

2. public inheritance:
 it makes public members in base
 public members in derived

Warning:
private mambers in base are NOT
accessiable in derived class.

3. private inheritance:
 it makes public members in base
 private members in derived

Inheritance Access Control

class Base{
 private:
 int x;
 public:
 int y;
};

class DPublic : public Base{

};

class DPrivate: private Base{

};

DPublic object
x
y

Base’s private member
DPublic’s public member

int main(){
 DPublic a;
 cout<<a.y<<endl;
 cout<<a.x<<endl;

ß This is ok
ß Compile Error!

 public:
 int getX(){return x;}ß Compile Error!

 DPrivate b;
 cout<<b.y<<endl; ß This is now

 Compile Error!

 public:
 int getX(){return x;}
 int getY(){return y;}

ß Compile Error!
ß This is ok

DPrivate object
x
y

Base’s private member
DPrivate’s private member

Inheritance

int main(){
 Airplane a(10);
 a.ShowData();

}

<<Airplane>>
passenger: 4196928
baggage: 2.07321e-317
crew man: 10 How do we initialize the members from the base class?

Airplane object

passenger

baggage

crew_man

Vehicle’s private member

Airplane’s private member

 Airplane(int person, double weight, int crew) {
 passenger = person;
 baggage = weight;
 crew_man = crew;
 }

compile error!
because the members are private.

class Airplane : public Vehicle{
private:
 int crew_man;

public:
 Airplane(int crew) {crew_man = crew;}

Constructors: Base vs Derived
class Base{
 public:
 Base(){
 cout<<"Base() called."<<endl;
 }
 Base(int a){
 cout<<"Base(int a) called."<<endl;
 }
};
class Derived: public Base{
 public:
 Derived(){
 cout<<"Derived() called."<<endl;
 }
 Derived(int a){
 cout<<"Derived(int a) called."<<endl;
 }
};

int main(){
 cout<<"<<d1 declared.>>"<<endl;
 Derived d1;

 cout<<"<<d2 declared.>>"<<endl;
 Derived d2(1);
}

<<d1 declared.>>
Base() called.
Derived() called.

1. The base constructor is called, then the derived one.
2. The default constructor is called for the base class.

How can we call Base(int a)?

<<d2 declared.>>
Base() called.
Derived(int a) called.

Constructors: Base vs Derived
class Base{
 public:
 Base(){
 cout<<"Base() called."<<endl;
 }
 Base(int a){
 cout<<"Base(int a) called."<<endl;
 }
};
class Derived: public Base{
 public:
 Derived(){
 cout<<"Derived() called."<<endl;
 }
 Derived(int a): Base(a){
 cout<<"Derived(int a) called."<<endl;
 }
};

<<d1 declared.>>
Base() called.
Derived() called.

<<d2 declared.>>
Base(int a) called.
Derived(int a) called.

Initializer list
Call the base class constructor that has one integer argument.

int main(){
 cout<<"<<d1 declared.>>"<<endl;
 Derived d1;

 cout<<"<<d2 declared.>>"<<endl;
 Derived d2(1);
}

1. Initialize Base members: Initializer List
class Vehicle{
 int passenger;
 double baggage;
public:
 Vehicle(int person, double weight){
 passenger = person;
 baggage = weight;
 }
 . . .
};

class Airplane : public Vehicle{
 int crew_man;
public:
 Airplane(int person, double weight, int crew): Vehicle(person, weight) {
 crew_man = crew;
 }
 . . .
};

int main(){
 Airplane a(120, 1300.0, 10);
 a.ShowData();

}

<<Airplane>>
passenger: 120
baggage: 1300
crew man: 10

When this constructor is called,
we will first call
Vehicle(int person, double weight).

1. Initialize Base members: Initializer List

class Airplane : public Vehicle{
 int crew_man;
public:
 Airplane(int p, double w, int c): Vehicle(p, w) {
 crew_man = c;
 }
 . . .
};

class Airplane : public Vehicle{
 int crew_man;
public:
 Airplane(int p, double w, int c): Vehicle(p, w), crew_man(c) {
 }
 . . .
};

You can also use Initializer List for the data member

int x;
x = 10;

int x = 10;

2. Initialize Base members: Protected Member
class Vehicle{
protected:
 int passenger;
 double baggage;

public:
 Vehicle(){}

 . . .
};
class Airplane : public Vehicle{
 int crew_man;

public:
 Airplane(int person, double weight, int crew){
 passenger = person;
 baggage = weight;
 crew_man = crew;
 }

 . . .
};

Access public
members

protected
members

private
members

Same
Class

Y Y Y

Derived
Class

Y Y N

Outside
Class

Y N N

Protected members of a class A are not accessible
outside of A's code, but is accessible from the code
of any class derived from A.

Polymorphism

• A call to a member function will cause a different function to be
executed depending on the type of the object that invokes the
function.
• Function overriding allows to have the same function in derived class

which is already defined in its base class.
class Vehicle{
 public:
 void ShowData(){cout<<"<<Vehicle>> "<<endl;}
};
class Airplane : public Vehicle{
 public:
 void ShowData(){cout<<"<<Airplane>> "<<endl;}
};
class Train : public Vehicle{
 public:
 void ShowData(){cout<<"<<Train>> "<<endl;}
};

int main(){
 Airplane a(100,300,20);
 a.ShowData();
}

<<Airplane>>

Airplane::ShowData() overrides
Vehicle::ShowData().

Declared Type vs. Actual Type

int main(){
 Airplane a(100,300,20);
 Train t(50,100,30);

 a.ShowData();
 t.ShowData();

 Vehicle *ptr;
 ptr = &a;
 ptr->ShowData();

 ptr = &t;
 ptr->ShowData();

 //ptr->AddLength(10);
}

<<Vehicle>>

• Base class pointer (or reference) can point
its derived class.

• However, the base class does not have
access to its derived class members.

<<Airplane>>
<<Train>>

<<Vehicle>>

Compile Error!

class City{
 private:
 Vehicle *vlist[100];
 int index;
 public:
 City(){ index = 0;}
 void AddVehicle(Vehicle *v){
 vlist[index++] = v;
 }
 void ShowList(){
 for(int i=0;i<index;i++)
 vlist[i]->ShowData();
 }
};

int main(){
 City Champaign;

 Champaign.AddVehicle(new Airplane(30,100,5));
 Champaign.AddVehicle(new Train(100,300,10));
 Champaign.AddVehicle(new Train(130,300,15));

 Champaign.ShowList();
}

Virtual Function – Why?

class City{
 private:
 Vehicle *vlist[100];
 int index;
 public:
 City(){ index = 0;}
 void AddVehicle(Vehicle *v){
 vlist[index++] = v;
 }
 void ShowList(){
 for(int i=0;i<index;i++)
 vlist[i]->ShowData();
 }
};

int main(){
 City Champaign;

 Champaign.AddVehicle(new Airplane(30,100,5));
 Champaign.AddVehicle(new Train(100,300,10));
 Champaign.AddVehicle(new Train(130,300,15));

 Champaign.ShowList();
}

We want to manage base class, not derived classes.
à Wish to resolve functions at run-time, a.k.a. dynamic binding.

We want to print out the full information about
Airplane or Train.
But, it will only print out Vehicle.

Virtual Function – Why?

Virtual Function

• Virtual functions are the member function in the base class that is
expected to be redefine in the derived class.
class Vehicle{
 public:
 virtual void ShowData(){
 cout<<"<<Vehicle>> "<<endl;
 }
};
class Airplane : public Vehicle{
 public:
 void ShowData(){
 cout<<"<<Airplane>> "<<endl;
 }
};
class Train : public Vehicle{
 public:
 void ShowData(){
 cout<<"<<Train>> "<<endl;
 }
};

int main(){
 Airplane a(100,300,20);
 Train t(50,100,30);

 a.ShowData();
 t.ShowData();

 Vehicle *ptr;
 ptr = &a;
 ptr->ShowData();

 ptr = &t;
 ptr->ShowData();
}

<<Airplane>>
<<Train>>

<<Airplane>>

<<Train>>

static binding

dynamic binding

Abstraction – Pure Virtual Function & Abstract Class

class Vehicle{
 public:
 virtual void ShowData() = 0;
};
class Airplane : public Vehicle{
 public:
 void ShowData(){
 cout<<"<<Airplane>> "<<endl;
 }
};
class Train : public Vehicle{
 public:
 void ShowData(){
 cout<<"<<Train>> "<<endl;
 }
};

int main(){
Vehicle *vptr;
Vehicle v(100,10);

}

// this is ok
// compile error

<= pure virtual function (has no body)

*Derived class must define a body for the pure virtual
function, otherwise it will also be considered
an abstract base class.

<= abstract class (has a pure virtual function)

• ‘Vehicle’ class will never be instantiated as it is. Instead, it will be either
‘Airplane’ or ‘Train’ object.
• Abstract class cannot be instantiated (pointer is fine) and implemented

with one or more “pure” virtual function

class Person{
 char name[20];
 int age;

public:
 Person(char const *_name, int _age){
 strcpy(name, _name);
 age = _age;
 cout<<"constructing name: "<<name<<endl;
 };
 ~Person(){
 cout<<"destroying name: "<<name<<endl;
 };

};

int main(){
 Person p1 = Person("Alice", 20);
 Person p2 = Person("Bob", 20);

}

Constructor & Destructor

constructing name: Alice
constructing name: Bob
destroying name: Bob
destroying name: Alice

Copy Constructor
class Point{
private:
 int x,y;

public:
 Point(int _x, int _y){x = _x; y = _y;}
 Point(const Point &p){
 x = p.x;
 y = p.y;
 //p.x = 0; // Don’t want to allow this
 }
 void ShowData(){ cout<<"("<<x<<", "<<y<<")"<<endl;}

};
int main(){
 Point p1(10,20);
 Point p2(p1);

 p1.ShowData();
 p2.ShowData();

}

• Initialize an object using another object (member-by-member).
• If a copy constructor is not provided by the user,
 it will be automatically inserted (default copy constructor)

Use “const” to prevent modification on p

Shallow Copy
class Person{
private:
 char *name;
 int age;

public:
 Person(){};
 Person(const char *_name, int _age);
 void ShowData();
 ~Person();

};
Person::Person(const char *_name, int _age){
 name = new char[strlen(_name)+1];
 strcpy(name, _name);
 age = _age;

}
Person::~Person(){
 delete []name;

}

Person::Person(const Person &p){
 name = p.name;
 age = p.age;

}

Default copy constructor will be inserted.

int main(){
 Person p1 = Person("Alice", 20);
 Person p2(p1);
 p1.ShowData();
 p2.ShowData();

}

Run-time error!

Shallow Copy

Person p1

name

age=20

"Alice"

Heap memory

Person p2

name

age=20

Person::Person(const Person &p){
 name = p.name;
 age = p.age;

}

Shallow Copy

Person p1

name

age=20

"Alice"

Heap memory

Person p2

name

age=20

Person::~Person(){
 delete []name;

}

Destructor called!

When p1 calls its destructor,
the heap memory pointed by “name” is already deallocated.

🚫 double free!

Deep Copy

Person p1

name

age=20

"Alice"

Heap memory

Person p2

name

age=20

"Alice"

Person::Person(const Person &p){
 name = new char[strlen(p.name)+1];
 strcpy(name, p.name);
 age = p.age;

}

Person::Person(const Person &p){
 name = p.name;
 age = p.age;

}

this Pointer

• The this pointer holds the address of the current object.

class AAA{
 public:
 AAA *getAddress(){
 return this;
 }

};

int main(){
 AAA *a1 = new AAA();
 cout<<"pointer a1: "<<a1<<endl;
 cout<<"this of a1: "<<a1->getAddress()<<endl;

pointer a1: 0xddb010
this of a1: 0xddb010

Operator Overloading: Copy Assignment (=)
 Point p1(1,2);

 Point p2(p1);
 Point p3 = p1;

 p3 = p2;

àCall copy constructor
àCall copy constructor

àp3 is already initialized. Cannot call copy constructor.
p3.operator=(p2)

 Point& operator=(const Point &p){
 x = p.x;
 y = p.y;
 return *this;
 }

• Copy assignment is implicitly
defined, if user did not provide it.

• The return value is a reference to *this.
• It allows “chained assignment”.

p3 = (p2 = p1); à p3 = p2;
p2.operator=(p1)

Default things added by compiler, if user doesn’t provide

• constructor
• destructor
• copy constructor
• copy assignment

