
ECE 220: Computer Systems & Programming

Lecture 2: I/O
Thomas Moon

January 18, 2024

Announcements

• MP1 has been released.
• To retrieve MPs, you need to setup Git.
https://courses.grainger.illinois.edu/ece220/sp2024/pages/toolchain/gi
t/setup/

• You can now reserve CBTF for the first mock quiz

https://courses.grainger.illinois.edu/ece220/sp2024/pages/toolchain/git/setup/
https://courses.grainger.illinois.edu/ece220/sp2024/pages/toolchain/git/setup/

ECE220…

Keyboard =

Display =

I/O Types

1. How instruction interacts with I/O device?

Memory-Mapped I/O Special I/O Instructions

• Reuse memory
instructions (LD/ST
family)

• Extra set of instructions
for I/O
(designated opcode)
• For example, your

instruction set will look
like
ADD, NOT, AND, BR, ….,
KB, DP

• Represent device
registers as memory
addresses

What if…
we want to add a mouse?

I/O Types
2. Transfer timing

Synchronous
• Data supplied at a

fixed/predictable rate

• CPU reads/writes every
X cycles

Asynchronous
• Data rate less

predictable (keyboard)
• Problem: missing data

or multiple read/write

• Solution: Handshaking
(ready bit)

I/O Types

3. Who controls the interaction?

Polling Interrupt-Driven
• Processor controls the

interaction
• I/O controls the

interaction

• Keep asking whether
the I/O data is ready

• Processor is
interrupted by
announcement from
I/O• “Are you ready? Are

you ready? …”
• “Wake me up when you

are ready.”

I/O Types of LC-3

Memory-Mapped I/O Special I/O InstructionsVS

→KBSR, KBDR, DSR, DDR

Asynchronous SynchronousVS

→ Handshake thru status registers

Polling Interrupt-DrivenVS
The last lecture!

LC-3 I/O Device Registers

Keyboard
• KBDR : store ASCII value entered from keyboard
• KBSR : let processor know a new value is entered

Monitor
• DDR : store ASCII value to be displayed on monitor
• DSR : let processor know a new value is ready to be displayed

Input from keyboard (Handshaking)

When a character is typed in …

1. Its ASCII code is placed in bits [7:0] of KBDR (bits [15:8] are always zero)

2. The “ready bit” (KBSR[15]) is set to one (by keyboard electronic circuits)

3. Keyboard is disabled -- any typed characters will be ignored

When KBDR is read …
1. KBSR[15] is set to zero (by keyboard electronic circuits)
2. Keyboard is enabled

KBSR

KBDR
15 8 7 0

1514 0

Keyboard data (8 bits)

Ready bit

LC-3 Memory-mapped Device Registers

• The device registers (KBDR,
KBSR, DDR, DSR) are mapped
to the memory address.

• The device registers are
physically separated from the
memory.

16

1616

16

MEM.EN, READ

ADDR
CONTROL

LOGIC

GateMDR

MARMDR LD.MDR LD.MAR

2

INPUT

KBSR KBDRMEMORY

INMUX

2

R.W / READ

Circuit for Memory-mapped I/O

Read data from Memory
at address X

1. MAR ← X
2. READ signal
3. MDR ← MEM[MAR]

16

1616

16

MEM.EN, READ

ADDR
CONTROL

LOGIC

GateMDR

MARMDR LD.MDR LD.MAR

2

INPUT

KBSR KBDRMEMORY

INMUX

2

R.W / READ

Circuit for Memory-mapped I/O

Read data at KBDR

1. MAR ← xFE02
2. READ signal
3. MDR ← KBDR

*Address control logic decodes the address
and select either memory or KBSR/KBDR.

Q. When KBDR is ready, the value of KBSR is
1. Negative
2. Zero
3. Positive
4. Unknown

Q. Which instruction updates the condition codes
(NZP)?

1. ADD R1,R1,#1 R1 <- R1 + #1
2. STR R4,R1,#1 mem[R1+1] <- R4
3. LDI R1,LABEL R1 <- mem[mem[LABEL]]
4. NOT R3,R4 R3 <- NOT(R4)

hint: each time R0-R7 is written, NZP is updated

Basic Input Routine (by polling)

1. Load KBSR to a register (R0-R7)
2. Check its MSB by sign
à Z or P: repeat 1
à N: Load KBDR to a register

Ø Read a single character from keyboard.

1. How do you want to read KBSR/KBDR?
(i.e. LD or LDI or LDR or LEA)

2. How do you want to branch?
(which BR?)

input.asm

DSR

DDR
15 8 7 0

1514 0

Output to Monitor (Handshaking)

When Monitor is ready to display another character…
1. The “ready bit” (DSR[15]) is set to one

When data is written to DDR
1. DSR[15] is set to zero
2. Character in DDR[7:0] is displayed

Output data (8 bits)

Ready bit

3. Any other character written to DDR is ignored, while DSR[15] is zero

Circuit for Memory-mapped I/O

Write data to Memory
at address Y

1. MAR ← Y, MDR ← Data
2. WRITE signal
3. MEM[MAR] ← DataDSR

16

16

16

16

16

ADDR
CONTROL

LOGIC

LD.DDR

GateMDR

MARMDR

2

MEMORY

LD.MDR LD.MAR

DDR

OUTPUT

INMUX

R.W / WRITE

MEM.EN, WRITE

Circuit for Memory-mapped I/O

Write data to DDR

1. MAR ← xFE06, MDR ← Data
2. LD.DDR signal
3. DDR ← DataDSR

16

16

16

16

16

ADDR
CONTROL

LOGIC

LD.DDR

GateMDR

MARMDR

2

MEMORY

LD.MDR LD.MAR

DDR

OUTPUT

INMUX

R.W / WRITE

MEM.EN, WRITE

Basic Output Routine

1. Load DSR to a register (R0-R7)
2. Check its MSB sign
à Z or P: repeat 1
à N: Store a character to DDR

Ø Display a single character to monitor.

output.asm

1. How do you want to read DSR?
2. How do you want to write DDR?
3. How do you want to branch?

(which BR?)

Echo keyboard input (input.asm + output.asm)

LC-3 TRAP Routines for Handling I/O

• TRAP routines for input

• TRAP routines for output

Vector Symbol Routine

x20 GETC Read a single character (no echo)

x23 IN Print prompt to console, read and echo character from keyboard

Vector Symbol Routine

x21 OUT Output a character to the monitor

x22 PUTS Write a string to the console

GETC/OUT vs input.asm & output.asm

Very similar except a few things…
More on Lecture 3!

