
ECE 220: Computer Systems & Programming

Lecture 14: File I/O in C
Thomas Moon

March 5, 2024

I/O Stream

Input/Output ProgramStream

i.e. keyboard, monitor, files, etc.

Stream (stdin)Keyboard scanf(“%d”, &x)

Stream
• Interfacing with I/O and program
• a sequence of data (text or binary) to which the actual input/output is mapped

For example,

Stream Abstraction for I/O

• A text stream is a sequence of ASCII characters, such as
• the sequence of ASCII characters printed to the monitor by a single program
• the sequence of ASCII characters entered by the user during a single program
• the sequence of ASCII characters in a single file

• Characters are processed in the order in which they were added to
the stream
• e.g., a program sees input characters in the same order as the user typed

them.

• C has three default “Standard streams”
• Input (keyboard): stdin
• Output (monitor): stdout
• Error (monitor): stderr

(sidenote) When do you use stderr?

• It’s a good practice to redirect all error messages to stderr, while
directing all regular outputs to stdout.
• Example:

./a.out >a.log 2>err.log

 fprintf(stdout , "Normal output1\n");
 fprintf(stdout , "Normal output2\n");
 fprintf(stderr, "Error1 \n");
 fprintf(stdout , "Normal output3\n");
 fprintf(stderr, "Warning1\n");

./a.out

Normal output1
Normal output2
Error1
Normal output3
Warning1

Normal output1
Normal output2
Normal output3

Error1
Warning1

[monitor] [a.log] [err.log]

• Every value that goes into the stream is captured by the low-level OS
software and kept in a buffer (a small array)

Buffering

Keyboard Buffer Stream Program

Input Buffering

Program Buffer Stream Monitor

Output Buffering

The buffer is released when the user presses Enter key.

The buffer is released when the program submits a newline character (‘\n’)

• Buffer allows to decouple the producer from the consumer.

Input Buffer

 char in1, in2, in3;

 in1 = getchar();
 in2 = getchar();
 in3 = getchar();

 printf(”result:\n");
 printf("%c", in1);
 printf("%c", in2);
 printf("%c", in3);

getchar
• Reads one ASCII character from stdin (keyboard)
• LC-3 GETC or IN TRAP

You type
ABCD↵

1. Before type enter(↵), the buffer
is not released to the stream

2. Only ‘A’, ‘B’, ‘C’ will be read by
getchar()

Keyboard Buffer stdin Program

Input Buffering

Input Buffer getchar
• Reads one ASCII character from stdin (keyboard)
• LC-3 IN TRAP

You type
A↵

Keyboard Buffer stdin Program

Input Buffering

 char in1, in2, in3;

 in1 = getchar();
 in2 = getchar();
 in3 = getchar();

 printf(”result:\n");
 printf("%c", in1);
 printf("%c", in2);
 printf("%c", in3);

Output Buffer

int main(){
 putchar('a’);

 sleep(5);
 putchar('b');
 putchar('\n’);

}

putchar
• Displays one ASCII character to stdout (monitor)
• LC-3 OUT TRAP

Program Buffer stdout Monitor

Output Buffering

What do you see?

1. ‘a’, then 5 seconds, then ‘b’
2. ‘ab’, then 5 seconds
3. 5 seconds, then ‘ab’.

Output Buffer

int main(){
 putchar('a’);

 sleep(5);
 putchar('b');
 putchar('\n’);

}

putchar
• Displays one ASCII character to stdout (monitor)
• LC-3 OUT TRAP

Program Buffer stdout Monitor

Output Buffering

What do you see?

1. 5 seconds, then ‘ab’.
2. Nothing
3. Segment fault

*side note
putchar, fprintf or fputs flushes the buffer at
1. new line
2. program reads from input buffer
3. after program exists

Basic I/O Functions
• Creating I/O streams

• fopen: open/create a file for I/O
• fclose: close a file for I/O

• I/O one character at a time
• fgetc: Reads an ASCII character from stream
• fputc: Writes an ASCII character to stream
• getchar: Reads an ASCII character from the keyboard
• putchar: Writes an ASCII character to the monitor

• I/O one line at a time
• fgets: Reads a string (line) from stream
• fputs: Writes a string (line) to stream

• Formatted I/O
• fprintf: Writes a formatted string to stream
• fscanf: Reads a formatted string to stream
• printf: Writes a formatted string to the monitor
• scanf: Reads a formatted string to the keyboard

File I/O

• A file is a sequence of ASCII characters (or binary) stored in some
storage device.
• Each file is associated with a stream.
• It can be input stream or output stream or both.

• To read or write a file, we declare a file pointer (The FILE type is
defined in <stdio.h>)

• Read/write a file requires 3 step:
1. Open the file
2. Do reading or writing
3. Close the file

FILE *infile;

Creating I/O stream

FILE* fopen(char* filename, char* mode)
Open a file to read or write
§ Parameters

§ filename
§ mode: how the file will be used

§ “r” – read from the file

§ “w” – write, starting from the beginning of the file

§ “a” – write, starting at the end of the file (append)

§ Return value
§ success: returns a pointer to FILE
§ failure: returns NULL

Creating I/O stream

int fclose(FILE* stream)
Close a file
§ Parameters

§ stream: Pointer to a file

§ Return value
§ success: returns 0
§ failure: returns EOF
(Note: EOF is a macro, commonly -1)

 FILE *myfile;
 myfile = fopen("test.txt", "w");
 if(myfile == NULL){
 printf("Cannot open file for write.\n");
 return -1;
 }

 .
 .
 .
 fclose(myfile);
 return 0;

I/O one character at a time

int fgetc(FILE* stream)
Read a single character from a file, then
advanced to the next character.
§ Parameters

§ stream: Input stream

§ Return value
§ success: returns the current character
§ failure: returns EOF

I/O one character at a time

int fputc(int character, FILE* stream)
Write a single character to a file
§ Parameters

§ character: character to be written
§ stream: Output stream

§ Return value
§ success: write the character to file and returns the
character written

§ failure: returns EOF

 char c;
 FILE *fp1, *fp2;

 if((fp1=fopen("original.txt", "r")) == NULL){
 printf("Unable to open a file.\n");
 return -1;
 }
 if((fp2=fopen("modified.txt", "w")) == NULL){
 printf("Unable to open a file.\n");
 return -1;
 }

 do{
 c = fgetc(fp1);
 if(c>='0' && c<='9')
 fputc(c,fp2);
 }while(c!= EOF);
 fclose(fp1);
 fclose(fp2);

Example

I/O one line at a time

char* fgets(char* string, int num, FILE*
stream)
Read a line from a file
§ Parameters

§ string: Pointer to a destination array
§ num: Max # of char to be copied into string
§ stream: Input stream

§ Return value
§ success: returns a pointer to string
§ failure: returns NULL

 char buf[SIZE_BUF];

 //store into buf until SIZE_BUF-1 characters
 //or a newline or the end-of-file
 fgets(buf, SIZE_BUF, stdin);

 //store into buf until whitespace
 scanf("%s", buf);

• fgets vs scanf

I/O one line at a time

int fputs(const char* string, FILE*
stream)
Write a string to a file
§ Parameters

§ string: Pointer to a source array
§ stream: Output stream

§ Return value
§ success: returns a non-negative value
§ failure: returns EOF

 FILE *fp;
 char buffer[SIZE];

 if((fp= fopen("append.txt", "a"))== NULL){
 printf("cannot open the file\n");
 return -1;
 }
 printf("Enter a string to append: ");
 fgets(buffer, SIZE, stdin);

 fputs(buffer, fp);
 fclose(fp);

Formatted I/O

int fprintf(FILE* stream, const char*
format, …)
Write formatted output to a stream
§ Parameters

§ stream: Output stream
§ format: String that contains the text to be written

§ format specifier: %d, %lf, %s, etc
§ (additional arguments): Replace a format specifier

§ Return value
§ success: returns the number of characters written
§ failure: returns a negative number

Formatted I/O

int fscanf(FILE* stream, consta char*
format, …)
Read formatted input from a stream
§ Parameters

§ stream: Input stream
§ format: String that specifies how to read the input

§ format specifier: %d, %lf, %s, etc
§ (additional arguments): A pointer to store read data

§ Return value
§ success: returns the number of items read
§ failure: returns EOF

Variable Argument Lists

• The number of arguments in a
printf or scanf depends
on the number of data items
being read or written.
• We have two options for

pushing the arguments:
 1. right-to-left
 2. left-to-right
• Which one is easier to figure

out the number of arguments
for the callee-function?

x0000

xFFFF

x

y

z

printf("%d %d %d\n", x, y, z);

ptr to format string

Activation record
for previous function

z

y

x

ptr to format string

Parameters for
printf

R6

(a) (b)

R6

(a) is easier because “ptr to format string” is always on the top before the function call occurs.
Once printf takes over, it can access the first parameter and analyze the format string to determine the other parameters.

Example

 int uid;
 char name[20];
 double gpa;

4311 Alice 3.42
1133 Bob 4.0

Alice 4311 3.42
Bob 1133 4.0à

data.txt swapped.txt

Example

 int uid;
 char name[20];
 double gpa;

 FILE *fp_in = fopen("data.txt", "r");
 FILE *fp_out = fopen("swapped.txt", "w") ;

 while(fscanf(fp_in, "%d %s %lf", &uid, name, &gpa) != EOF)
 fprintf(fp_out, "%s %d %lf\n", name, uid, gpa);

 fclose(fp_in);
 fclose(fp_out);

4311 Alice 3.42
1133 Bob 4.0

Alice 4311 3.42
Bob 1133 4.0à

data.txt swapped.txt

