ECE 220

Lecture xO00F - 03/07/24

ECE 220 - Spring 2024

Recap/reminders

e | asttime e Reminders
e Streams & buffers e This lecture concludes
material for MT2
e Filel/O
e MT2 is on 03/28, plan
e Formatted I/O ahead
« Examples Drop-deadline is tomorrow

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Exercise

* Write a function to transpose a 4 3
given TSV file and write the zariski 99 Monday
output to transposed.tsv Newton — 43 Sunday

Russel 72 Saturday
Maxwell 32 Wednesday
 The number of rows and

columns will be present as
the first line of the input file:
records.tsv

3 4
Zariski Newton Russel Maxwell
* TSV stands for Tab- 09 43 72 32

Mond Sund Saturd Wednesd
Separated-Values. onday Sunday Saturday Wednesday

ECE 220 - Spring 2024 See gitlab for answers after lecture ILLINOIS

Exercise

« How about comma-separated values? Let us transpose a matrix
stored on disk and write it back to disk.

 The input matrix is in file mat . csv with the first line specifying the
number of rows and columns in the matrix.

* Write output to file t mat.csv.

UNIVERSITY OF

See gitlab for answers after lecture ILLINOIS

ECE 220 - Spring 2024 4

Introduction to structs

» Often useful to the programmer to combine pieces of information
into a single abstract unit

 Example(s)

o A student could have a name (char[801]), UIN (unsigned
long int), year (unsigned int)and GPA (float)

e A flight could have an altitude (unsigned int), latitude
(float), longitude (f1loat), airspeed (float) and airline code
(char[20])

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Introduction to structs

* Achieved by letting the programmer create their own data type
using the struct keyword.

 Examples:

struct flightType{
char flightCode[20];
unsigned int altitude;

struct student({
char name[80];

ineianed int your,
unsig 1 year; float latitude;
float GPA;

. float airSpeed;
’ }i

ECE 220 - Spring 2024 ILLINOIS

Defining structs

struct flightType{ e A struct allows the user to
char tlightCode[20]; define a new data type that
unsigned 1int altitude; t th i+ £
float longitude: groups together | ems of types
float latitude; that are already defined.
unsigned float airSpeed;

bi » « Defining a struct tells the

compiler

However ... no memory * How big the struct is ...

allocated yet! | |
* How to lay items out In

memory ...

ECE 220 - Spring 2024 ILLINOIS

Declaring & using structs

 Memory is only allocated when ¢ struct variables can also be
variables are created using the initialized at declaration.
newly defined type.

struct student sl = {“Garfield”,

struct flightType plane; 123456, 6, 3.5}

struct student sl;
* Also possible to create arrays of

 Elements of a struct are called structs
its memberg. Members can be struct student bl2[2] = {sl,
accused using the “dot” {"Scooby", 234578164, 2, 4.0}};
notation. printf(“Name 1is %$s”, bl2[1l].name);
plane.altitude = 1000;
plane.airspeed = 800.0;

ECE 220 - Spring 2024 ILLINOIS

Memory mapping

« How many bytes of memory
should one instance of . 1 o
s1.name
student take?
a s1.name|[1]
struct student({
char name[80];
unsigned long UIN;
unsigned int year; s1.name[/8]
) float GPA; . s1.name[79]
123456 s1.UIN
struct student sl =
{“Garfield”, 123456, 6, 3.5} 6 s1.year
3.5 s1.gpa

80+8+4+4

ECE 220 - Spring 2024 ILLINOIS

Memory mapping

 What if we change the definition

to this one?
8074+8+4+4="7

struct student({
char name[74];

unsigned long UIN; Let us check using
unsigned int year; sizeof function.
float GPA;

i
What happened?

Compilers will often perform “padding” to align memory.

Use the sizeof operator to get accurate results!

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
 Suppose we have 4 byte memory access granularity.

Thus, operations will be
faster if memory is

 Task: Read 4 bytes from address x01

aligned.

x00 Read high bytes x00 o 9

x01 & = x02 |
X0 g \

x02 » > x03 | x0T
x02 03 < x02
03 X Combine 03

| | X
x04 \ x04 c x04
05 © 3 |

X x05 £ S
x06 x06 5 &
x07 Read low bytes x07 %

ECE 220 - Spring 2024

Advanced Topic

ILLINOIS

https://en.cppreference.com/w/c/language/object#Alignment

The typedef keyword

e Note how we declared a struct

: : typedef struct f£lightType{
variable: .
char flightCode[20];
struct f£lightType plane; unsigned int altitude;
struct student sl; float longitude;

float latitude;

: : ' float ai ;
* Annoying to keep having to say unsigned float airSpeed

} Flight;
struct xyz, struct abc -
more so in the context of function Flight f1 = {“AA 4324",
calls 33000,
87.6,
. . . 41.8,
* C provides a mechanism to avoid 700} »

this verbosity.

ECE 220 - Spring 2024 ILLINOIS

Pointers to structs

* One can define pointers * To access struct elements via
to structs the usual way. pointers you can

Flight planes[100]; Dereference and dot
Flight *ptrl;
ptrl = &planes[10];
Flight *ptr2;
ptr2 = planes;

printf(“I am %f feet high”,
(*ptrl).altitude);

e Arrow

Special syntax! < printf(“I am %f feet high”,
ptrl->altitude);

ECE 220 - Spring 2024 ILLINOIS

Passing structs as arguments

* One can write function definitions involving using structs in either
way:

void print student(struct student s){
printf("Student %s is associated with UIN: %lu\n", s.name, s.UIN);
printf("%s is in Year %d with GPA %f\n", s.name, s.year, s.GPA);

}

volid print flight(Flight f){
printf("Flight #%s is at altitude %ul\n", f.flightCode, f.altitude);
printf("%s has speed %$f\n", f.flightCode, f.airSpeed);

}

ECE 220 - Spring 2024 ILLINOIS

Passing structs as arguments

 We could also pass the struct via reference:

void print flight loc(Flight *f){
printf("Flight #%s is at altitude %u\n", f->flightCode, f->altitude);
printf("%s has lattitude: %$f\n", f->flightCode, f->latitude);
printf("%s has longitude: %$f\n", f->flightCode, f->longitude);

}

 Which is cheaper in terms of memory/run-time stack?

 What if we had an array of structs?

ECE 220 - Spring 2024 ILLINOIS

Structs within structs

* Nothing stops us from creating * Then we can do:

a struct composed of structs. typedef struct flight{

char code[8];

Suppose we have: unSJ:.gned J:.nt arrival_{:ime;
unsigned i1nt depart time;
struct geoloc{ struct geoloc origin;
float lattitude; struct geoloc destination;
float longitude; } Flight;
i

ECE 220 - Spring 2024

ILLINOIS

Other user defined types: enums

 Enum is short for enumeration. ldea is to assign meaningful names
to integers for code readability.

e Syntax: enum [tag] {enumerator list};

enum weekday {SUN, MON, TUE, WED, THR, FRI, SAT};

int 1s workday(enum weekday day) {
(day>SUN && day<SAT)
return 1;
else
return O0;

Can you override default values assigned to enums?
See gitlab: https://gitlab.engr.illinois.edu/itabrah2/ece220-fa23/

ECE 220 - Spring 2024 ILLINOIS

Other user defined types: enums

int main(void){

enum weekday today=THR;
enum weekday day after next = today+2;

printf("Today is day #%d of the week.\n", today);
printf("Today is %s\n", is workday(today) ? "a workday" : "not a workday");

printf("\n");
printf("Day after tomorrow is day #%d of the week.\n", day after next);
printf("That day is %s\n",

1s workday(day after next) ? "a workday" : "not a workday");

ECE 220 - Spring 2024

Other user defined types: unions

e Unions are similar to structs ... both have members.

typedef union unionl/{ typedef struct structl/{
char c; char c;

int x; int x;

double vy; double vy;

}Unionl; }Structl;

 However, all members of a union share the same memory location;
l.e., it allows an identifier to change between some predefined

types.

ECE 220 - Spring 2024 ILLINOIS

Example: Airport management

* Writing a struct to a file:

fwrite(void #*ptr, size, n memb, FILE *stream)

 ptr Is pointer to instance of the struct to write
 size Is the size in bytes of each element to be written (use sizeof)

 n memb IS the number of items to write, each with size of size
bytes

e stream is the pointer to FILE object in binary write mode.

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

Example: Airport management

* Writing a struct to a file:

fread(void *ptr, size, n memb, FILE *stream)

e ptr IS pointer to instance of the struct to hold data
 size Is the size in bytes of each element to be read (use sizeof)

 n memb IS the number of items to read, each with size of size
bytes

e stream is the pointer to FILE object in binary read mode.

UNIVERSITY OF

ECE 220 - Spring 2024 ILLINOIS

-~ =mppp e T TR R TR e N T T = Ll e e e e
L RRRRRR A S YO K e e e
etk S s gt d b ey vt s el R RS R e bt ettt ettt LR e D e

S T T P D e P L L L

I L S P L Rk kS

+*###**+————J—-—==:=——-»— SR rAii—2 A STl e
______________________ S 3o rdulod bl 5 £

R g e
++/ & N N NNy kKU A e e e e
++ L S **###****#*+_ ______________________________

:===:=:=:=:+***####**#***###########################%###%#* *##########*###############%%%####****###++*###*++*#*+ +****#***#####+— ———————————————

=t = B BB BBRRR R HAAR AR R NHBBRRR AR RR R BBETRRURT T+ R R ==+ T

e e R R R Bl 1 1 e B B - B B B S £ - PR -
ok of ok ok ok ok ok ok ok ok ok L HE =—=7 e ++ ¥ * #¥ - =g a5 Sk e
ok ok ke k ok kR Rk ok SRR kG Rk ok R gpprokokgper
L s e . 20 &
FR KRR KRR RO UMM O ek kRO k% _H K - R, J—— ., S e
Nelaialobodobabebebob 3o 75 0 T b SRS -2 S e et S SRR 22 2
PEH R R R R RRHE = =f+ B

%

-— 4= B#+ = SR YRERERETTRRRRRER

*= -~ l== =¥ AR M= = BRI R RERRRR Y e

Bt ==+t =ti=t#+ 4+ =t R e

+#+ -~ %= = s 1 BRI PR e
¥ Ok 2 * SRR P

#= =+ l=---—_ =++ Y- =t mmmmmemmmmmmmmn e

e Ry = /S B Rl 2 - A B B o o o o O o B

A bk Kk b I, b B B b RO R KK KKK G G R L FRKORE L L

IR R HHHHHHRARRRRBRARHERR T AR R ARBBR R R R AR R AR BBBRR R R HERR AR R BRBRRRRRT N+ ==+ VG R R RHRRR ARG EE T AR GGAOORRR o RO B
N R R R S R B R R R R R R B R R IR ORIH I, == B R X R XN R R AR T+ 1+

ey GO R e B R R AR T T2 3 R SRR
44TV A Ak K g ok Rk ok ok R R ROk R R R R R R Rk
%%###%@@@@#+**********=,:*###########*********##******#%%#***#**#

YU HPHULAREYH R G R R R kY BB IS F R0 ok ko skok koo e sk ok ok bk ok ok g

R RN T NN, AR R R B R BB AR AR R R R G H B AR AR R AR+

oo R07070 00070000 + + ¥ F ¥ = = HRRHBIH X XK T0I07 204 60 070 0001 i B HABAUWNHHHH MM B R HHBHH = -
g e e e G
OT0R0R0M T T HEH HE 3676707000 00009 1 907000000070 J0 4 B T B R H R B B A F o oo oo * -
Foe S eE e S et e S e R S S R B B

: R o b T B B B B
Fop b R R R R X R R R R R R AR AR XA+ -
T R S G e e O S S S S S S S S S S S S S S
0706000696 %626 %% % 36 % H 96 6 % R B 2096 %6 % %66 % 6 % H EAERE0LAOORRIEAEATEAAELAMOMRRAEACECAAERE* | -
IDDD@DEREEEEEEE@@DEEH663 %% B E@ NI HT6H07676766E T3 2696 20510707070 7600 70070704 60,070 00 00k X — -

ECE 220 - Spring 2024 Dr. lIvan Abraham

22

:******#*#######*****************++*******##########****++*=
+#*#**###########***#**********+7***#*#*************#******=

SR o o g ol o o o R SRR KRR SR KO O K o KR K K B o o ok Kok ok

bk ko ko ke kR okt ok sk ok ok R Rk S ok 3 o ok ok ok
_ R SRR | ok K kIt A ok sk ok o sk ok ok ok ok o o
+%###****************=

= e s s b b bbb e B R E KRR Rk K YIRS

- R RERBER BRI R OB B BERRRRFHRR R R RR BRI IIRIN 070767767676 766

+ 0767606767676 76,7570, 0707070000 070.70.10.10.10,06,00.000 1070 70.70.70.10,0,0,0 & 76 10 0 GO D EDDERRDE R E B EES
- QRREEEEEEAAEIAAAARREEEETIEAAERIRRRERECEREAAAARERRRRRERA A

+FHORRERRETA@@@HHKH%%%%7%7%7%% %9666 56567630767 9676 7666090 00 000 10 070 2070 2070 70 20 2005
- FHHIOI6T6 67637676 707070700070707070776,16.76.70.70,0,070070707070,00,070 10 16 16 2650 200100 207070700090 26,26, 20,0

UNIVERSITY OF

ILLINOIS

URLAMNA-C-AMFAIGH

