
ECE 220 Computer Systems & Programming

Lecture 4 – Programming with Stack

• LC-3 practice is available on PrairieLearn
• Mock quiz should be taken next week @ CBTF
• Quiz1 (LC-3 programming) is available for reservation

Lecture 3 Review: Stack

q Order of Access
q Two Main Operations
q Overflow vs. Underflow
q Hardware vs. Software Implementation
q Top of Stack Pointer (stack pointer)

2

Ø In the following two figures, which stack is empty? (Note: STACK_TOP points to the next
available spot.)

Run-Time Stack

• Information of an invoked function
(subroutine) is stored in a memory
template called the activation
record or stack frame.

• Functions’ activation records are
pushed onto the Run-Time Stack in
the order they are invoked.

v Supervisor Stack is different from
Run-Time Stack (more details at
the end of the semester). 3

Balanced Parentheses Check Using a Stack

Examples of balanced parentheses:
(()()()()) (((()))) (()((())()))

Examples of unbalanced parentheses:
((((((()) ())) (()()(()

Open parenthesis ‘ (’ – ______________ to the Stack

Close parenthesis ‘) ’ – ______________ from the stack

Assuming the expression would fit into the stack, unbalanced expression can be
found under two situations:
1. At the end of the expression –
2. While entering expression –

4

Palindrome Check Using a Stack

A word, phrase, number or other sequence of characters which reads the same
forward or backward.
• Madam
• Kayak
• Was it a car or a cat I saw
• 123456654321

Ø How can we perform a palindrome check using a stack?

5

Postfix Expression (input is single digit operand)

Infix Postfix
(3+4)-5 34+5-
2^(8-4)
7+(9-6)/3
 512+4*+3-

Note: ‘12-’ is 1-2 not 2-1

Ø Are these inputs valid postfix expressions? How would your program know?
• 46*-
• 13+57

6

Arithmetic Using a Stack
Compute (A+B)*(C+D) and store the result in R0

; Implementation using registers
LD R0, A

LD R1, B
ADD R1, R0, R1

LD R2, C

LD R3, D

ADD R3, R2, R3

JSR MULT
HALT

* MULT subroutine
(Input: R1, R3; Output: R0)

; Implementation using a Stack
; PUSH, POP, ADD & MULT subroutines are given
LD R0, A
JSR PUSH

*PUSH: from R0 to stack; POP: from stack to R0
*ADD: POP 2 numbers, compute and then PUSH result back
*MULT: POP 2 numbers, compute and then PUSH result back

7

Arithmetic Using a Stack

Implement an ADD subroutine that pops two numbers from a stack and perform
the add operation (see flowchart below).

8

Implement ADD Subroutine

9

• R6 should be used as stack pointer (points to the next available spot on the stack)
• Assume PUSH, POP and CHECK_RANGE subroutines are given & callee-saved

; PUSH
; Input: R0 (value to be stored on stack)
; Output: R5 (0 – success, 1 – failure)

; POP
; Output: R0 (value to be loaded from stack)
; Output: R5 (0 – success, 1 – failure)

; CHECK_RANGE: return 0 if value is within -100 to 100 decimal,
; otherwise return 1
; Input: R0 (value to be checked)
; Output: R5 (0 – success, 1 – failure)

Ø What do we need to consider when implementing the ADD subroutine?

; ADD subroutine – pop two numbers from stack,
; perform ‘+’ operation and then push result back to the stack
; Output: R5 (0 – success, 1 – failure)

; save registers

; Initialize R5

; first pop

; check return value of first pop, go to EXIT if failed (R5 = 1)

10

; second pop

; check result of second pop, go to RESTORE_1 if it failed

; add two numbers

; check range of sum, go to RESTORE_2 if it failed

; everything is good, push sum to stack

11

RESTORE_1
; put back first number

RESTORE_2
; put back both numbers

EXIT
; restore registers

RET
STACK_START .FILL x4000
STACK_END .FILL x3FF0
STACK_TOP .FILL x4000 12

