ECE 220: Computer Systems & Programming

Lecture 6: Control Structures & Basic I/O

Announcements:

Machine Problem Submission due date
MP 01 - Printing histogram 09-04
MP 02 - Stack calculator 09-11
MP 03 - Pascal's triangle 09-18
Location Topic(s)
Mock 09/08 - 09/10 CBTF Short Survey 25

LC-3 practice (HWO)

LC-3 Programming (up to and including Lecture 4/Lab 1 /MP 1)

See Lab1 and Lab2 programming exercise.

Quiz 1 09/15 - 09/17 CBTF 100
An LC-3 web simulator will be available during Quiz 1 - you should NOT

use it for your MPs.

Exam schedule

Practice Conflict Exam
Date & Time Location

Questions Information

Lecture 1 to Lecture 06 Past exams

Midterm Thursday 09/25 at) Sign-up Link
ECEB Associated book chapters, labs,and MPs. Worksheets .
1 7.00pm - 8.20pm Deadline: 09/21

(Programming & Concept) LC3 RefSheet

Practice

int a =6, b =09;

EXpression vValue of Expression
al| b O0b0110 | Ob1001 = Ob1111l = 15
a || b true OR ture =1
a&b 0b0110 & 0b1001 = O
a &&b 1

l(a + b) 0

a%b 6

b / a 9/6 = 1

a=> 9

a=b=2>5 5

++a + b-- 11

Input and Output (More details in Lec14)

* Must include <stdio.h> to usel/O functions.

printf("%d\n", counter);

* This call says to print the variable counter as a decimal integer, followed by
a linefeed (\n).

scanf("%d", &startPoint);

* This call says to read a decimal integer and assign it to the variable
startPoint.

* Must use ampersand (&) for variables being modified. (Explained in later
lecture)

Format Specifier

specifier Output Example
dori Signed decimal integer 392
u Unsigned decimal integer 7235
o Unsigned octal 610
X Unsigned hexadecimal integer 7fa
X Unsigned hexadecimal integer (uppercase) 7FA
f Decimal floating point, lowercase 392.65
F Decimal floating point, uppercase 392.65
e Scientific notation (mantissa/exponent), lowercase 3.9265e+2
E Scientific notation (mantissa/exponent), uppercase 3.9265E+2
g Use the shortest representation: %e or %f 392.65
G Use the shortest representation: %E or &F 392.65
a Hexadecimal floating point, lowercase -0xc.90fep-2
A Hexadecimal floating point, uppercase -0XC.90FEP-2
c Character a
s String of characters sample
p Pointer address b8000000
Nothing printed.
n The corresponding argument must be a pointer to a signed int.
The number of characters written so far is stored in the pointed location.
% A % followed by another % character will write a single % to the stream. (%

Control Structures

e Conditional
one or another statement will be executed, but
not both, depending on some condition:

e 1f
e if-else
e« switch

* lteration
some statements will be executed multiple
times until some condition is met:

« while
 for
« do-while

\

Statement 1

Test
condition

\

Statement 2

true

action

false

if statement

e 1f (condition)

action;
; LC-3 assembly
false ; generate condition code
gR(nzp) FALSE
true ; action

-
r

FALSE

-
r

example

1f (x < 0)

X = =-X; /* simple statement */
1f (x > 5)
1f (x< 25) {

y = X * x +5; /* compound statement */

printf (“y=%d\n”, v):
}

e action statement can be simple, as in first example, or compound, as
in second example

example

1f (x < 0)

X = =-X; /* simple statement */

if (x > 5 && x< 25) |
y = X * x +5; /* compound statement */
printf (“y=%d\n”, Vv);
}
e action statement can be simple, as in first example, or compound, as
in second example

Example if statements

1t (x

y

1t (X

N <

<=

10)

* X + 5;

10) {

* X + 5;

*y) / 3;

same

if (x <= 10){

y=X7's‘

X + 5;

10

if-else statement

i1f (condition)

action when condition is true;
else

action when condition is false;

; LC-3 assembly

-
r

true false ; generate condition code
BR (nzp) FALSE
; action 1
action 1 ‘ action 2 BRnzp DONE

F

FALSE
i ; action 2

-
r

DONE

Example

1f (x > 5 && x< 25) |

1f (x < 0) y=X*X‘|‘5;

X = -X; printf (“y=%d\n”, v);
else }

X:X*ZI

else

printf (“x=%f\n”, x);

common programming errors
o if (x =2) using assighment operator instead of ==

Associating ifs with elses

o in a cascaded if-else statement, an else is associated with the closest if
= that is, when not using braces, which is not a good practice

1f (x !'= 0) 1f (x !'= 0) {
if (y > 3) if (y > 3)
z =2z / 2; same as z =z / 2;
else else
z =z + 2; z =z + 2;
}

“else” is associated with the closest unassociated if. How do you associate “else” with the outer if?

if we really want to associate else with the first if, then we
should use braces:

1f (x !'= 0) {
1t (y > 3)
z =z / 2
}
else
z =z + 2

use braces to write clear and readable code!

Floating Number Comparison (Caution)

float myFloat = 3.14;

1f(myFloat == 3.14)
printf("My float is PI.\n");
else

printf("My float is not PI.\n"); My float is not PI.

double myDouble = 3.14;

1f(myDouble == 3.14)
printf("My double is PI.\n");
else

printf("My double is not PI.\n"); My double is PI.

printf("%d, %d, %d\n", sizeof(3.14), sizeof(3.14f), sizeof(myFloat));

8, 4, 4
15

switch statement

e consider example shown in the left column; it also can be implemented as shown

on the right:

Using cascaded if-else statements

Using switch statement

actionl;

else 1f (expression ==
actionZz;

else i1if (expression ==
action3i;

else
actionh;

if (expression == constl)

const?2)

const3)

switch (expression)

case constl:
actionl;
break;

case constZ:
actionZ;
break;

case const3:
action3;
break;

default:
actionN;

{

16

J

evaluate
expression
true
= action 1
false
true
> action 2
false

action N

v

this only works when we consider some discrete values to which expression is evaluated,

constl, const?2, ..

Break Example

a=>5;
switch(a){
case 5:
printf(“e");
break;
case 2:
printf(“Cc");
break;
default:
printf(“G");
break;
}

a=>5;
switch(a){
case 5:
printf(“e");
case 2:
printf(“c");
default:
printf(“G");

ECG

18

Iterative constructs

lterative construct means that some statements will be executed multiple times until some

condition is met:

| ; LC-3 implementation
LOOP
false ; generate condition code
BR(nzp) FALSE

¥

; action

true

action BRnzp LOOP

FALSE
/. ’

Such construct implements a loop structure in which action is executed multiple times, as long
as some condition is true
o action is also called loop body
19

while and do-while statements

while (condition) {
subtask;

}

do {
subtask

} while (condition);

For while loop, loop body may or may not be executed even once
For do-while loop, loop body will be executed at least once

false

true

subtask

r

V.

‘ subtask ‘

true

false
20

Example

while

do-while

®x = 0;

while (x < 10) {
printf (“x=%d\n”, x);
X = x + 1;

printf (“x=%d\n”
x =x + 1;}
while (x < 10);

for statement

e for (1nit; test; update) {
subtask; i

condition

‘ subtask ‘

W/
‘ update ‘

22

Example

While for
x = 0; for (x = 0; x < 10; =x++)
while (x < 10) { printf (“x=%d\n”, x);

printf (“x=%d\n”, x);
x = x + 1;

break and continue

* break

used only in switch or iteration statement
break will cause the loop to be terminated

e coOntinue

e used only in iteration statement

 end the current iteration and start the next

if(i == 5)
break;
printf("%d ",1);

for (i = 1; i < 10; i++){

for (i = 1; i < 10; i++){
if(i == 5)
continue;
printf("%d ",1);

1234

12346789

Problem: Print nxn ldentity Matrix

O = O
_ O O

1
* 3-by-3 identity matrix : 0
0

e Can we stop printing after the second “1” on the main diagonal such
as

O =

Example:

Computing solution of a quadratic equation ax?+bx+c=0

Algorithm:
oD =b?-4ac
olf D equals O, there is one real root: x = -b/(2a)

O

O

f D is positive, there are two roots: x, ,= (-b+vD)/(2a)

f D is negative, no real roots exist

Problem decomposition into separate steps using a flowchart

o Get input

o Compute solution according to the above algorithm

o Print output

26

' D=b?-4ac

Get input
(a, b, c)

\

Compute
solution

\

Output
roots X2

stop

Compute D

\/
x12=(-b=\D)/(2a)

27

Riemann integral

Problem statement: write a program to compute integral of a function f(x) on an interval [a,b].
Algorithm: use integral definition as an area under a function f(x) on an interval [a,b]

/ fix) N\
| >

ff(x)dleim f(aer_ﬂi)b—a

n—oo ¢ n n

false

dx=(b-a)/n
st=f(a+dx*1)*dx

29

/* compute integral of f(x) = x*x+2x+3 on [a,b] */
#include <stdio.h>

int main ()

{

int n
float a
float b
float s

int 1i;

float x,
float dx

M
I

Y:

100;

= -1.0f;
= 1.0f;
= 0.0£f;

Y-

a + dx * 1i;

/* hardcoded number of Reimann sum terms */
/* hardcoded [a,b] */

/* computed integral value */
/* loop counter */
/* x and y=f(x) */

/ n; /* width of rectangles */

i++)

x *x+ 2 * x + 3;
s += y * dx;

printf ("%£\n", s);

return 0;

30

	Slide 1
	Slide 2
	Slide 3: Practice
	Slide 4: Input and Output (More details in Lec14)
	Slide 5: Format Specifier
	Slide 6: Control Structures
	Slide 7: if statement
	Slide 8: example
	Slide 9: example
	Slide 10: Example if statements
	Slide 11: if-else statement
	Slide 12: Example
	Slide 13
	Slide 14
	Slide 15: Floating Number Comparison (Caution)
	Slide 16: switch statement
	Slide 17
	Slide 18: Break Example
	Slide 19: Iterative constructs
	Slide 20: while and do-while statements
	Slide 21: Example
	Slide 22: for statement
	Slide 23: Example
	Slide 24: break and continue
	Slide 25: Problem: Print nxn Identity Matrix
	Slide 26: Example:
	Slide 27
	Slide 28: Riemann integral
	Slide 29
	Slide 30

