
ECE 220: Computer Systems & Programming

Lecture 5: Introduction to C

• MP2 due this Thursday by 10:00PM

• Mock Quiz: 9/8 – 9/10

• Quiz1: 09/15 - 09/17

Written in C/C++

C – High Level Language

Give symbolic names to values
• Don’t need to know which register or memory location

Provides expressiveness
• Use meaningful symbols that convey meaning

• Simple expressions for common control patterns (if-else, for-while)

Provides abstraction of underlying hardware

• Operations do not depend on instruction set (ISA independent)

Compilation vs Interpretation
Different ways of translating high-level languages

Interpretation
• Interpreter: program that executes program statements

• Pros: Easy to debug, make changes, view intermediate results

• Cons: Programs takes longer to execute

• Languages: Python, Matlab

Compilation
• Translates statements into machine language

• Pros: Executes faster, memory efficient

• Cons: Harder to debug, change requires recompilation

• Languages: C, C++, Fortran

Compiling C Program (CS426-Compiler construction)

Preprocessor
• Macro substitution by C preprocessor directive

(e.g. #include, #define)

• “source-level” transformation: output is still C

Compiler
• Generate object file

Linker
• Combine object files into

executable image (including libraries)

C

Source and

Header Files

C Preprocessor

Compiler

Source Code

Analysis

Target Code

Synthesis

Symbol Table

Linker

Executable

Image

Library

Object Files

Compiler

• Source code analysis
• Source code is broken down and parsed

• Target code synthesis
• Generate machine code from analyzed code (optimization)

• Symbol table
• Map between symbolic names and items

Hello World!

#include <stdio.h>

int main(){
 printf("Hello World!\n");

 return 0;
}

$ gcc hw.c -o hw
$./hw
Hello World!

hw.c

A Simple C Program
/*
* Program Name: countdown from a StartPoint
*/
// Preprocessor directives
#include <stdio.h>
#define STOP 0
int global; // global variable
// Main function
int main()
{
 // Variable declaration
 int counter;
 int startPoint;

 // I/O
 printf("Enter a positive integer: ");
 scanf("%d", &startPoint);

 // Count down from the input number to 0
 for(counter = startPoint; counter >= STOP; counter--)
 {
 printf("%d\n", counter);
 }

 // Return value
 return 0;
}

Preprocessor Directives

#include <stdio.h>

• Before compiling, copy content of header file (stdio.h) into source code.

• Header files typically contain description of functions and variables needed
by the program.

• <…>: header files in a predefined directory
“…”: header files in the same directory as the C source file

#define STOP 0

• Before compiling, replace all instances of the string “STOP” with the string
“0”.

• Used for values that won’t change during execution.

main function

int main()

• Every C program must have a function called main().

• This is the code that is executed when the program is run.

Variable Declarations

int counter;

int startPoint;

• Variables are used as names for data items.

• Each variable has a type, which tells the compiler how the data to be
interpreted.

Input and Output (More details in Next Lectures)

• Must include <stdio.h> to use I/O functions.

printf("%d\n", counter);

• This call says to print the variable counter as a decimal integer, followed by
a linefeed (\n).

scanf("%d", &startPoint);

• This call says to read a decimal integer and assign it to the variable
startPoint.

• Must use ampersand (&) for variables being modified. (Explained in later
lecture)

More About Output

• Different formatting options:
%d: decimal integer

%x: hexadecimal integer

%c: ASCII character

%f: floating-point number

 int number = 65;
 printf("in decimal: %d, in hex: %x, in character: %c\n"
 , number, number, number);

in decimal: 65, in hex: 41, in character: A

Variables (type + identifier + scope)

Type - 3 Basic data types

• int 32-bit 2’s complement integer (machine dependent)

• char 8-bit character (ASCII)

• double 64-bit floating-point
• float 32-bit floating-point

Identifier

• Any combination of letters, numbers, and underscore(_)

• Case matters

• Cannot begin with a number

Variables (type + identifier + scope)

Scope - the region of the program in which the variable is “alive”

• Local variables
• Accessible within a block

• Block defined by open and close braces { }

• Global variables
• Accessible throughout the program

• Storage class
• Automatic – Lose value once block is completed (local variables are automatic

by default)

• Static – Retain value throughout program

int itsGlobal = 0;

int main()
{
 int itsLocal = 1; /* local to main */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 {
 int itsLocal = 2; /* local to this block */
 itsGlobal = 4; /* change global variable */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 }
 printf("Global %d Local %d\n", itsGlobal, itsLocal);

 return 0;
}

Global 0 Local 1
Global 4 Local 2
Global 4 Local 1

Example: Global Variable

Output:

Example: Static Variable

int A(){
 static int a = 5;
 a++;
 return a;
}
int main(){
 printf("%d\n", A());
 printf("%d\n", A());

 a = 10; //compile error

 return 0;
}

6
7

Output:

Memory Allocation for Variables

• When C-compiler compiles a program, it
keeps track of variables in a program
using a symbol table.

• Symbol table contains
• variable’s name

• variable’s type

• variable’s location (as an offset)

• variable’s scope

C

Source and

Header Files

C Preprocessor

Compiler

Source Code

Analysis

Target Code

Synthesis

Symbol Table

Linker

Executable

Image

Library

Object Files

Symbol Table

int inGlobal;
int outGlobal;

int dummy(int in1, int in2);

int main()
{
 int x,y,z;
 …

}

int dummy(int in1, int in2)
{
 int a,b,c;
 …
}

Name Type Location
(as an offset)

Scope

inGlobal int 0 global

outGlobal int 1 global

x int 0 main

y int -1 main

z int -2 main

a int 0 dummy

b int -1 dummy

c int -2 dummy

Space for Variables
(More details in Lecture 10…)

1. Global data section
(global variables)

2. Run-time stack
(local variables)

• R4 (global pointer) points the first global variable

• R5 (frame pointer) points first local variable

• R6 (stack pointer) points the top of run-time
stack

Type Qualifiers

• The basic types (int, char, float/double) can be modified by a qualifier.

• unsigned

• long, short

• change its default size

• No strict definition on the change (depends on the machine)

sizeof(char) < sizeof(short int) < sizeof(int) < sizeof(long int)

unsigned int d;

Operators

Expression: combination of variables and literals with operators
(e.g. x*y+4)

Statement: expresses a complete unit of work, includes assignment
operator (e.g. z = x*y;)

• Assignment operator (=)

• Arithmetic operators
Symbol Operation Usage
 * multiply x * y
 / divide x / y
 % modulo x % y
 + addition x + y
 - subtraction x - y

Ex)
8%3

Operators (continued)

• Bitwise operators

• Rational operators (Result is 1 or 0)

Symbol Operation Usage
 ~ bitwise NOT ~x

 << left shift x << y

 >> right shift x >> y

 & bitwise AND x & y

 ^ bitwise XOR x ^ y

 | bitwise OR x | y

Symbol Operation Usage
 > greater than x > y

 >= greater than or equal x >= y

 < less than x < y

 <= less than or equal x <= y

 == equal x == y

 != not equal x != y

Operators (continued)

• Logical operators (1, if logically true or non-zero)

• Increment/Decrement operators: ++,--

• Special operator (conditional)
• variable = condition ? value_if_true : value_if_false;

• example: x = (y<z) ? 5 : 7

• Compound Assignment Operators
• a+=b; <-->a=a+b;

• a*=b; <-->a=a*b;

Symbol Operation Usage
 ! logical NOT !x

 && logical AND x && y

 || logical OR x || y

Ex)
7 & 8 = 0b0111 & 0b1000 = 0
7 && 8 = true && true = 1

x = 4;
y = x++;

result
x=5
y=4

x = 4;
y = ++x;

result
x=5
y=5

Example
/*
* Write a C program to calculate the function

 𝒇(𝒙) =
𝟏

𝟓
cos(𝝎𝒙) On the interval 𝑥 ∈ 0, 𝜋 .

Your program should ask user to enter all the relevant values 𝑛, 𝝎
 and print
A table of n pairs (𝑥𝑖 , 𝑓 𝑥𝑖), where 𝑖 = 0,1,2, … 𝑛 − 1 𝑎𝑛𝑑 𝑥𝑖 =

𝑖𝜋

𝑛

Implementation should include a loop construct and must call standard
functions, scanf, printf, and cos

*/

main function

int main()

• Every C program must have a function called main().

• This is the code that is executed when the program is run.

cf)
int main(int argc, char *argv[])
Example code (git): main_test.c
compile with – gcc main_test.c –o main_test
Execute with - ./main_test 1 9

	Slide 1
	Slide 2
	Slide 4: Written in C/C++
	Slide 5
	Slide 6: C – High Level Language
	Slide 7: Compilation vs Interpretation Different ways of translating high-level languages
	Slide 8: Compiling C Program (CS426-Compiler construction)
	Slide 9: Compiler
	Slide 10: Hello World!
	Slide 11: A Simple C Program
	Slide 12: Preprocessor Directives
	Slide 13: main function
	Slide 15: Variable Declarations
	Slide 16: Input and Output (More details in Next Lectures)
	Slide 17: More About Output
	Slide 18: Variables (type + identifier + scope)
	Slide 19: Variables (type + identifier + scope)
	Slide 20: Example: Global Variable
	Slide 21: Example: Static Variable
	Slide 22: Memory Allocation for Variables
	Slide 23: Symbol Table
	Slide 24: Space for Variables (More details in Lecture 10…)
	Slide 25: Type Qualifiers
	Slide 26: Operators
	Slide 27: Operators (continued)
	Slide 29: Operators (continued)
	Slide 30: Example
	Slide 33: main function
	Slide 35

