ECE 220: Computer Systems & Programming

Lecture 5: Introduction to C

* MP2 due this Thursday by 10:00PM
 Mock Quiz: 9/8 —9/10
* Quizl: 09/15 -09/17

Written in C/C++ _
LR PlayStation.

5 R Windows &
> macOS

O git

UNREAL

EEEEEE

Ratings (%)

30

25

20

15

10

0

A

W

| ‘\A"

[~V e e

TIOBE Programming Community Index

Source: www.tiobe.com

I
2002

I
2004

I
2006

== Python

2008

= C++

- C

== Java

—a - | - :’_
—
I
10 2012 2014
== C# == JavaScript == Visual Basic == Go

== Perl

Delphi/Object Pascal

C — High Level Language

Give symbolic names to values

* Don’t need to know which register or memory location

Provides expressiveness
* Use meaningful symbols that convey meaning
e Simple expressions for common control patterns (if-else, for-while)

Provides abstraction of underlying hardware

e Operations do not depend on instruction set (ISA independent)

Compilation vs Interpretation
Different ways of translating high-level languages

Interpretation

* Interpreter: program that executes program statements

* Pros: Easy to debug, make changes, view intermediate results
* Cons: Programs takes longer to execute

e Languages: Python, Matlab

Compilation
* Translates statements into machine language
* Pros: Executes faster, memory efficient

* Cons: Harder to debug, change requires recompilation
* Languages: C, C++, Fortran

C
Source and

Compiling C Program (cs426-Compiler construction)

Header Files
Preprocessor .
e Macro substitution by C preprocessor directive C Preprocessor }
(e.g. #include, #define)
* “source-level” transformation: output is still C Compier
Source Code
Analysis v
e
Compiler Target Code
* Generate object file

Y

@ Linker }
Linker

A

 Combine object files into "

Executable
executable image (including libraries) @

Compiler

e Source code analysis
* Source code is broken down and parsed

* Target code synthesis
* Generate machine code from analyzed code (optimization)

* Symbol table
* Map between symbolic names and items

Hello World!

hw.c

#include <stdio.h>

int main(){
printf("Hello World'\n");

return O;

}

S gcc hw.c -0 hw

S./hw
Hello World!

A Simple C Program

/7‘:
* Program Name: countdown from a StartPoint
:‘:/

// Preprocessor directives

#include <stdio.h>

#define sToOP O

int global; // global variable

// Main function

int main(Q)

{

// Variable declaration
int counter;
int startPoint;

// 1/0
printf("Enter a positive integer: ");
scanf("%d", &startPoint);

// Count down from the input number to O
for(counter = startPoint; counter >= STOP; counter--)

{
}

printf("%d\n", counter);

// Return value
return 0O;

Preprocessor Directives

#include <stdio.h>
* Before compiling, copy content of header file (stdio.h) into source code.

* Header files typically contain description of functions and variables needed
by the program.

e <...>: header files in a predefined directory
“...”. header files in the same directory as the C source file

#define STOP O

* Before compiling, replace all instances of the string “STOP” with the string
I(O”.

e Used for values that won’t change during execution.

main function

1nt main()

e Every C program must have a function called main().

* This is the code that is executed when the program is run.

Variable Declarations

1nt counter;
int startPoint;

e \Variables are used as names for data items.

* Each variable has a type, which tells the compiler how the data to be
interpreted.

Input and Output (More details in Next Lectures)

* Must include <stdio.h> to usel/O functions.

printf("%d\n", counter);

* This call says to print the variable counter as a decimal integer, followed by
a linefeed (\n).

scanf("%d", &startPoint);

* This call says to read a decimal integer and assign it to the variable
startPoint.

* Must use ampersand (&) for variables being modified. (Explained in later
lecture)

More About Output

* Different formatting options:
%d: decimal integer
%x: hexadecimal integer
%c: ASCII character
%f: floating-point number

int number = 65;
printf("in decimal: %d, 1n hex: %x, in character: %c\n"
, humber, number, number);

in decimal: 65, in hex: 41, in character: A

Variables (type + identifier + scope)

Type - 3 Basic data types
* 1nt 32-bit 2’s complement integer (machine dependent)
« char 8-bit character (ASCII)

- doub | e 64-bit floating-point
« float 32-bit floating-point

Identifier
* Any combination of letters, numbers, and underscore(_)
* Case matters

e Cannot begin with a number

Variables (type + identifier + scope)

Scope - the region of the program in which the variable is “alive”

* Local variables
* Accessible within a block
* Block defined by open and close braces { }

* Global variables
* Accessible throughout the program

 Storage class

* Automatic — Lose value once block is completed (local variables are automatic
by default)

e Static — Retain value throughout program

Example: Global Variable

int 1tsGlobal = 0;

int main()

{
int itsLocal = 1; /* Tocal to main */
printf("Global %d Local %d\n", itsGlobal, itsLocal);
{
int itsLocal = 2; /* local to this block */
1tsGlobal = 4; /* change global variable */
printf("Global %d Local %d\n", itsGlobal, itsLocal);
}
printf("Global %d Local %d\n", itsGlobal, itsLocal);
return 0;
}
Output: Global 0 Local 1

Global 4 Local 2
Global 4 Local 1

Example: Static Variable

int AQ{
static 1nt a = 5;
a++;
return a;

}

int main(){
printf("%d\n", AQ);
printf("%d\n", AQ);
a = 10; //compile error

return O;

Output: 6

~N

Memory Allocation for Variables

C
Source and
Header Files

* When C-compiler compiles a program, it

keeps track of variables in a program ,,
USing a SvmbOI table. C Preprocessor

Y

Compiler
Source Code

* Symbol table contains

Target Code

e variable’s name Synthesis

 variable’s type |

e variable’s location (as an offset) A
ject Files

* variable’s scope

Y

Executable
Image

Symbol Table

int
int

int

int

{

int

inGlobal;
outGlobal;

dummy(int inl, int 1n2);
main()

int X,Y,Z;

dummy(int inl, int 1n2)

int a,b,c;

Name Type Location Scope
(as an offset)
inGlobal int 0 global
outGlobal int 1 global
X int 0 main
y int -1 main
Z int -2 main
a int 0 dummy
b int -1 dummy
C int -2 dummy

Space for Variables
(More details in Lecture 10...)

1. Global data section
(global variables)

2. Run-time stack
(local variables)

* R4 (global pointer) points the first global variable

* R5 (frame pointer) points first local variable

* R6 (stack pointer) points the top of run-time
stack

) -

Program text

- -PC

Global data section

- R4

Heap
(for dynamically allocated memory)

|
|

Run-time stack

xFFFF -

<+— - R6 (Stack pointer)
e— - R5 (Frame pointer)

Type Qualifiers

* The basic types (int, char, float/double) can be modified by a qualifier.

e unsigned

unsigned int d;

* long, short
* change its default size
* No strict definition on the change (depends on the machine)

sizeof(char) < sizeof(short int) < sizeof(int) < sizeof(long int)

Operators

Expression: combination of variables and literals with operators
(e.g. x*y+4)

Statement: expresses a complete unit of work, includes assignment
operator (e.g. z = x*y;)

* Assignment operator (=)

* Arithmetic operators

Symbol Operation Usage
* multiply X *y
/ divide X /'y
% moduTo X %y Ex)
+ addition X + Yy 8%3
— subtraction X -y

Operators (continued)

* Bitwise operators

Symbol Operation Usage
~ bitwise NOT ~X
<< left shift x <<y
>> right shift X >> vy
& bitwise AND X &y
A bitwise XOR x Ny
| bitwise OR x |y

* Rational operators (Result is 1 or 0)

Symbol Operation Usage
> greater than X >y
>= greater than or equal X >=y
< less than x <y
<= less than or equal <=

X Y
== equal X ==y
= not equal x =y

Operators (continued)

* Logical operators (1, if logically true or non-zero)

Symbol Operation Usage
! logical NOT I'x
& & logical AND X && Y
| | logical OR x || vy

* Increment/Decrement operators: ++,--

 Special operator (conditional)
 variable = condition ? value_if true : value_if false;
 example: x=(y<z) ?5:7
* Compound Assignment Operators
* a+=b; <-->a=a+b;
* a*=b; <-->a=a*b;

Ex)

7 & 8 =0b0111 & 0b1000=0
7 && 8 =true && true=1

4,
X++;

Example
/-k

* Write a C program to calculate the function

1
f(x) = ECOS(wx) on the interval x € [0,7].
Your program should ask user to enter all the relevant values (n, w)
and print

A table of n pairs (x;f(x;)), where i=(LL2“"01—]Jandxi==;;

Implementation should include a lToop construct and must call standard
functions, scanf, printf, and cos

ala
EA

main function

1nt main()

e Every C program must have a function called main().

* This is the code that is executed when the program is run.

cf)
int main(int argc, char *argvl[])

Example code (git): main_test.c

compile with - gcc main_test.c -0 main_test
Execute with - ./main_test 1 9

	Slide 1
	Slide 2
	Slide 4: Written in C/C++
	Slide 5
	Slide 6: C – High Level Language
	Slide 7: Compilation vs Interpretation Different ways of translating high-level languages
	Slide 8: Compiling C Program (CS426-Compiler construction)
	Slide 9: Compiler
	Slide 10: Hello World!
	Slide 11: A Simple C Program
	Slide 12: Preprocessor Directives
	Slide 13: main function
	Slide 15: Variable Declarations
	Slide 16: Input and Output (More details in Next Lectures)
	Slide 17: More About Output
	Slide 18: Variables (type + identifier + scope)
	Slide 19: Variables (type + identifier + scope)
	Slide 20: Example: Global Variable
	Slide 21: Example: Static Variable
	Slide 22: Memory Allocation for Variables
	Slide 23: Symbol Table
	Slide 24: Space for Variables (More details in Lecture 10…)
	Slide 25: Type Qualifiers
	Slide 26: Operators
	Slide 27: Operators (continued)
	Slide 29: Operators (continued)
	Slide 30: Example
	Slide 33: main function
	Slide 35

