ECE 220 Computer Systems & Programming

Lecture 4: Programming with Stack
September 04, 2025

ECE ILLINOIS IlircrciNoOTS

* MP1 due Tonight (09/04) by 10pm

* CBTF mock quiz next week (09/08 - 09/10)

* reserve your slot with prairieTest

* MP2 will be released tonight

Previous Lecture

 Stack operation
PUSH
POP
Overflow detection
Underflow detection

STACK_END [1111/
[111]/
[111]/

/11111
STACK_START | ////// |<TOS (STACK_TOP)

- PUSH subroutine
IN: RO (value)
*OUT: R5 (0-success, 1-fail)

-POP subroutine

IN: none

-OUT: RO (value)

*OUT: R5 (0O-success, 1-fail)

Exercise 1:
In this exercise, we will write a program that reads the memory contents and prints out in

reverse order (but not changing the original memory contents). The starting and ending address
is stored in R1 and R2.
» Use PUSH and POP subroutines. Assume the subroutines are provided in the code.
* You do not have to check the overflow condition.
* Use the underflow detection (R5) by POP to break LOOP_POP.
« Example

Address

X5000
(starting addr)

X5001

X5002

X5003
(ending addr)

Result: 3210

:POP subroutine

Caller-save vs Callee-save ‘IN: none

-OUT: RO (value)
"OUT: R5 (0O-success, 1-fail)

.ORIG x3000 ; save RO and R5 here

; RO, R5, R7 have some important values that will be needed later
RO <- stack data

R5 <- flag

JSR POP ; R7 saves PC
- restore RO and R5
; want to keep original RO, R5, R7 after POP
RET

Q. How will you save RO, R5, R7?

Caller-save vs Callee-save ;POP subroutine

; IN: none

ORIG x3000 ;OUT: RO (value)

; RO, R5, R7 have some important values that will be needed later ;0UT: R5 (0-success, 1-fail)

ST RO, Save_RO
ST R5, Save_R5
ST R7, Save_R7

ISR POP Caller-save

; process RO and R5, then restore

LD RO, Save_RO
LD RS5, Save_R5
LD R7, Save R7

;OUT: RO, OUT R5 (O-success, 1-fail/underflow)
;R3: STACK START, R6: STACK TOP

Caller-save vs Callee-save pop

ST R3, POP_ SaveR3 ;save R3
ST R6, POP SaveR6 ;save R6
AND R5, R5, # ;clear RS
R3 and R6 are saved and restored. LD R3, STACK START ;

LD R6, STACK;IOP ;

NOT R3, R3 ;

. ADD R3, R3, # ;

Is it callee-save or caller save? ADD R3, R3, R6
BRz UNDERFLOW M
ADD R6, R6, # ;

Caller may not know the implementation LDR RO, R6, # ;
details of the implementation of stack. ST R6, STACK TOP ;
. BRnzp DONE POP ;
It only knows the input/output arguments UNDERFLOW
ADD R5, R5, # ;
DONE POP

LD R3, POP_SaveR3 ;
LD R6, POP_SaveR6 ;
RET

POP_SaveR3 .BLKW # ;
POP_SaveR6 .BLKW # ;
STACK END .FILL x3FFE ;
STACK START .FILL x4000 ;
STACK TOP .FILL x4000 ;

Using Stack convention in calling suboutine

Saving program state when serving interrupt-driven |10
PC and PSR saved in supervisor stack (discussed later)

Saving and restoring registers when calling a subroutine

» Stack enables subroutines to be re-entrant
|t can be interrupted and then safely resume its operation.
* It can call other subroutines including itself (recursive)
* Part of the foundation for multi-threading

Some applications: calculator, checking balanced parentheses, etc.
(related to MP2)

Programming with Stack

Most calculators use a stack to store operands and results of the calculation
= Recall from LC-3’s ISA that ADD instruction requires 3 operands
e “ADD DR, SR1, SR2”
e All 3 locations of the operands are explicitly identified
Many calculators are implemented in a way that none of the operands need to be
explicitly identified
e Operands are pushed into the stack
e “ADD” is sufficient
e To perform it, two values are popped off the stack, added, and the result
is pushed back onto the stack
= Example: E=(A+B) * (C+ D)

Example: Arithmetic Calculator Using a Stack

* Example: E = (A+B)*(C+D)

:LC-3 1mplementation :Stack-based 1mplementation
LD RO, A PUSH ;A
LD R1, B PUSH ;B
ADD R1, RO, R1 ADD
LD R2, C PUSH ;C
LD R3, D PUSH ;D
ADD R3, R2, R3 ADD
JSR MULT MULT
POP :E
"MULT subroutine
“IN: R1,R3 ;ADD- POP 2 numbers, compute and then
-OUT: RO :PUSH result back

;MULT- POP 2 numbers, compute and then
:PUSH result back

Arithmetic Using Stack

Implement a multiplication subroutine (MUL) that pops two numbers
from a stack and perform the multiplication operation and put the

result back into the stack.

Recall:
; multiply RO = R1*R2

AND RO, RO, #0
ILOOP ADD RO, RO, R1 ;
ADD R2, R2, #-1

BRp LOOP

.ORIG x3000

;R1<-a
.R2<-b ; call subroutine

JSR MULT ; stack <- result

; prepare arguments
AND RO. RO. #0 ; consume result
ADD R1, RO, #5; R1<-5 JSR POP
ADD R2, RO, #7 ; R2 <- 7 ADD RS, RO, #0

; restore RO
LD RO, MAIN_SaveRO ;

; save RO
ST RO, MAIN_SaveRO ;

; push arguments ; continue
ADD RO, R1, #0 HALT
JSR PUSH
ADD RO, R2, #0 ; main's data

JSR PUSH MAIN_SaveRO .BLKW #1

; MULT multiplies two positive numbers

: IN: stack ; multiply

AND RO, RO, #0

LOOP ADD RO, RO, R1 ;
ADD R2, R2, #-1

BRp LOOP

; OUT: val in stack <- (vall from stack*®

val2 from stack)
; R1, R2: vall, val2

MULT ; put result onto the stack
ST R2, MULT_SaveR2 JSR PUSH

ST R7, MULT_SaveR7
LD R2, MULT_SaveR2

; get operands from the stack LD R7, MULT_SaveR7
JSR POP
ADD R2, RO, #0 RET
JSR POP
; data

ADD R1, RO, #0 MULT_SaveR2 .BLKW #1

MULT_SaveR7 .BLKW #1

Lab2 Review

* Balanced parentheses: each opening symbol has a
corresponding closing symbol and the pairs of
parentheses are properly nested.

Which are “balanced parenthesis”?

1. (0000
I

. ((((((())
- ((()))

> W N

How do you check Balanced Parentheses?

Examples of balanced parentheses:
* (0000) (((O)N) (OWD0))

Examples of unbalanced parentheses:
* ((((((()) () I

Use Stack

* Open parenthesis ‘(“ — PUSH to the stack

* Close parenthesis ‘)" — POP from the stack

Assuming the expression would fit into the stack, unbalanced expression can be
found under two situations:

1. At the end of the expression — Stack is not EMPTY

2. While entering expression — Stack detects UNDERFLOW

MP2 Preview: Postfix Expression
A postfix expression is a sequence of numbers ('1','5', etc.) and operators ('+', 'x', '-'
etc.) where every operator comes after its pair of operands:

<operandl> <operand2> <operator>

For example “3 + 2” would be represented as “3 2 +” in postfix

The expression "(3 — 4) + 5" with 2 operators would be "3 4 - 5 +" in postfix
Notice that a nice feature of postfix is that the parentheses are not necessary,
which makes the expressions more compact, and unambiguous
Examples

Infix: (3+4)x5 postfix: 34 +5 x

Infix: 3+(4x5) postfix: 345 x +

Infix: 7+(4x(6-2)) postfix:7462—x+

How about:31/+3=

STACK
_START

724 +-

Empty

After 3 numbers

push 7
push 2
push 4

Valid Post Expression & Stack

After +

pop 4
pop 2
push 2+4=6

After -

pop 6
pop 7
push 7-6=1

After =

pop 1
Result : 1

Invalid Post Expression & Stack

. 4
What if = After9
1244+ -= 9
/]24+-9=)
—
4 4 -~ 4 4
2 6 6 - 9 -
STACK 7 7 1 1
_START
Empty After 3 numbers After + After - After =
push 7 pop 4 pop 6 pop 9
push 2 pop 2 pop 7 Result: 9
push 4 push 2+4=6 push 7-6=1

MP2 - Partl: Postfix Expression & Stack

Unbalanced-casel

(Underflow while taking actions for an operator)

Unbalanced-case?2

W (Stack has more than one number before ‘=*
oW
do W€
oW

If you meet ‘=*, do 2 POPs
* first POP to grab the result
 second POP to check it’s empty
=2 If underflow, valid
-2 If not, invalid

Invalid Post Expression & Stack

24+-=
-
4 4 - 4
STACK «— 2 6 6
_START
Empty After 2 numbers After + Underflow

while -

Invalid Post Expression & Stack

. 4
What if = After9
1244+ -= 9
/]24+-9=)
—
4 4 -~ 4 4
2 6 6 - 9 -
STACK 7 7 1 1
_START
Empty After 3 numbers After + After - After =
push 7 pop 4 pop 6 pop 9
push 2 pop 2 pop 7 Result: 9
push 4 push 2+4=6 push 7-6=1

	Slide 1
	Slide 2
	Slide 3: Previous Lecture
	Slide 4
	Slide 5: Caller-save vs Callee-save
	Slide 6: Caller-save vs Callee-save
	Slide 7: Caller-save vs Callee-save
	Slide 8: Using Stack convention in calling suboutine
	Slide 9: Programming with Stack
	Slide 10: Example: Arithmetic Calculator Using a Stack
	Slide 12: Arithmetic Using Stack
	Slide 14
	Slide 15
	Slide 22: Lab2 Review
	Slide 23: How do you check Balanced Parentheses?
	Slide 28: MP2 Preview: Postfix Expression
	Slide 33: Valid Post Expression & Stack
	Slide 34: Invalid Post Expression & Stack
	Slide 35: MP2 - Part1: Postfix Expression & Stack
	Slide 36: Invalid Post Expression & Stack
	Slide 37: Invalid Post Expression & Stack

