
ECE 220 Computer Systems & Programming

Lecture 23 – Trees: traversal and search

Tree Data Structure

Array, linked list, stack, queue – linear data structures

Tree: A data structure that captures hierarchical nature of relations between
data elements using a set of linked nodes. Nodes are connected by edges. It’s a
nonlinear data structure.

Tree Terminology:

root, internal node, external node (leaf),

parent, child, sibling, height, depth

The depth of a node is the number of edges

from the node to the tree's root node.
A root node will have a depth of 0.

The height of a node is the number of

edges on the longest path from the node to a leaf.
A leaf node will have a height of 0.

2

Common Operations on Tree:

▪ Locate an item

▪ Add a new item at a particular place

▪ Delete an item

▪ Remove a section of a tree (pruning)

▪ Add a new section to a tree (grafting)

Manually Creating a simple tree:

Binary Tree

▪ Each node has at most 2 children – left child and right child

What is the height of the tree?

What is the depth of node E?

What is the height of node E?

Which nodes are leaves?

3

Binary Search Tree

5

▪ Data of nodes on the left subtree is smaller than the data of parent node

▪ Data of nodes on the right subtree is larger than the data of parent node

▪ Both left and right subtrees must also be BST

▪ Data in each node is unique

Insert a new node in the right place (BST)

Binary Search Tree

5

▪ Data of nodes on the left subtree is smaller than the data of parent node

▪ Data of nodes on the right subtree is larger than the data of parent node

▪ Both left and right subtrees must also be BST

▪ Data in each node is unique

What is the sequence of access for

1. post-order traversal?

2. pre-order traversal?

3. in-order traversal?

Traverse a BST (postorder)

1 4 7 6 3 9 10 8

Traverse a BST (preOrder)

88 3 1 6 4 7 10 9

Traverse a BST (inOrder)

1 3 4 6 7 8 9 10

Search for a Node in BST

6

Finding Minimum and Maximum:

FreeTree:

Height of BST

Breadth First Search (BFS)

▪ Start at the root node and explores all neighboring nodes first. Then for each
of these nearest nodes, it explores their unexplored neighbor nodes and so
on. A queue data structure is used to carry out the search.

 Suitable for finding shortest path in a graph - GPS application.

Steps:

1. Enqueue the root node.

2. Dequeue the node and check it -if the sought element is found, done.

Otherwise, enqueue any direct childs that have not been tested.

3. Repeat step#2.

Code on Github: BST_search_BFS_DFS.c

Depth First Search (DFS)

Start at the root node and explores as far as possible along each branch, going
deeper and deeper in the tree.

- When a leaf node is reached, the algorithm backtracks to the parent node
and checks its children nodes.

- Can be implemented as a recursive algorithm.

 (The algorithm used in slide#6, “Search for a Node in BST,” is DFS)

BST (Binary Search Tree) implemented using C++

• Create a binary search tree and perform:

• Insertion

• Search a node

• Count no. of nodes

• Find height of the tree

• Traverse the tree (inorder) and

 store the nodes in a vector

• Delete tree

• Delete a particular node!

BST (class)

BST (main)

BST (main cont.)

BST (main cont.)

BST (constructor & insertion)

Constructor:

BST (insertion)

BST (search)

BST (countnodes)

BST (getHeight)

BST (inorder traversing)

BST (inorder traversing)

BST (inorder traversing)

BST (~bst) – delete BST

BST (~bst) – delete BST

Delete a Node from BST

Ref: https://www.geeksforgeeks.org/deletion-in-binary-search-tree/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: BST (Binary Search Tree) implemented using C++
	Slide 24: BST (class)
	Slide 25: BST (main)
	Slide 26: BST (main cont.)
	Slide 27: BST (main cont.)
	Slide 28: BST (constructor & insertion)
	Slide 29: BST (insertion)
	Slide 30: BST (search)
	Slide 31: BST (countnodes)
	Slide 32: BST (getHeight)
	Slide 33: BST (inorder traversing)
	Slide 34: BST (inorder traversing)
	Slide 35: BST (inorder traversing)
	Slide 36: BST (~bst) – delete BST
	Slide 37: BST (~bst) – delete BST
	Slide 38: Delete a Node from BST
	Slide 39

