
ECE 220 Computer Systems & Programming

Lecture 2 – Repeated Code: TRAPs and Subroutines

Last Class Example (memory Mapped I/O)

2

Drawbacks
➢ Requires knowledge of the hardware
➢ One could mess up hardware registers

Solution: TRAP Service Routine

– It is desirable to provide service routines or
system calls (part of operating system) to safely
and conveniently perform low-level, privileged
operations

• User program invokes system call

• Operating system code performs operation

• Returns control to user program

3

How to make this idea work?

• The actual code of the service
routine is referred indirectly in
Trap Vector Table

• Mechanism for invocation
• TRAP Instruction, e.g., TRAP x20

• TRAP vector (8 bits)

• How to find address service
routine?

User program invokes TRAP subroutine; OS code performs operation; Returns control to user program

1

opcode

1 1 1 0 0 0 0

unused trap vector

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRAP

TRAP Mechanism (TRAP x20)

x044C

0000 0100 0100 1100x0020

1111 0000 0010 0000

TRAP Mechanism (TRAP x20)

trap_test.asm

trap_test.obj

TRAP Mechanism (TRAP x20)

trap_test.asm

TRAP Mechanism

• PC is loaded with the address of the first instruction of the corresponding service routine
o MAR←ZEXT(trapvector)
o MDR←MEM[MAR]
o R7←PC (note that R7 is loaded with the current content of the PC to provide a way
 back to the user program)
o PC←MDR

• Once the service routine is done, control is passed back to the user program using RET
instruction, here it does the same operation as JMP R7 instruction

o PC←R7 (restore old PC to return to the user program)

1

opcode

1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

R7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RET

o must make sure that service routine does not change R7, or we won’t know where to return
o also, must make sure R7 does not have a useful value that will be overwritten in the process of calling a
TRAP

TRAP x20 Mechanism – LC3 DEMO

trap_test.asm

trap_test.obj

LC-3 TRAP Mechanism

• TRAP instruction
• used by user program to transfer control to OS
• 8-bit Trap vector names one of

256 service routines

• Set of service routines
• part of OS
• start at arbitrary addresses (within OS)
• LC-3 uses only six TRAP service routines (x20 – x25)

• Table of starting addresses
• stored at x0000 through x00FF in memory
• called Trap Vector Table (or System Control Block)

• Linkage
• return control back to user program

12

RET (a.k.a JMP R7)

TRAP Instruction

• Trap vector (8-bit index)
• Table of service routine addresses (x0000-x00FF)

• Zero-extended into 16-bit memory address

• R0 is used to store the return value or to pass the argument.

13

vector symbol routine

x20 GETC read a single character into R0 (no echo)

x21 OUT output a character in R0 to the monitor

x22 PUTS write a string to the console (addr in R0)

x23 IN
print prompt to console, read and echo

character from keyboard (R0)

x24 PUTSP
write a string to the console (2 characters

per memory location) (addr in R0)

x25 HALT halt the program

TRAP example

15

Goal
1. 3 decimal inputs (single digit) from keyboard
2. Convert ASCII into binary
3. Store the 3 binary values in memory

-What problem we have?

 .ORIG x3000
 LEA R3,Binary
 LD R6,ASCII
 LD R7,COUNT
AGAIN
 TRAP x23
 ADD R0,R0,R6
 STR R0,R3,#0
 ADD R3,R3,#1
 ADD R7,R7,#-1
 BRp AGAIN
 HALT
ASCII .FILL #-48
COUNT .FILL #3
Binary .BLKW #3
 .END

TRAP example

16

Goal
1. 3 decimal inputs from keyboard
2. Convert ASCII into binary
3. Store the 3 binary values in memory

-What problem we have?

 .ORIG x3000
 LEA R3,Binary
 LD R6,ASCII
 LD R7,COUNT
AGAIN
 ST R7, SAVER7
 TRAP x23
 ADD R0,R0,R6
 STR R0,R3,#0
 ADD R3,R3,#1
 LD R7, SAVER7
 ADD R7,R7,#-1
 BRp AGAIN
 HALT
ASCII .FILL #-48
COUNT .FILL #3
Binary .BLKW #3
SAVER7 .BLKW #1
 .END

Remedy: Save & Restore Registers

We must save the value of a register if its value will be destroyed by a subsequent
action (e.g. service routine) and we will need to use the value after that action.

Two Conventions for Saving & Restoring Registers:

1. Caller-saved (caller knows what it needs later, but may not know what gets altered

by callee routine)

– last TRAP Example (i.e. get 3 decimal inputs from keyboard, convert them into binary,
and store them)

- Save R7 before calling TRAP x23 and retrieve R7 after returning to the caller.

2. Callee-saved (callee knows what it alters, but does not know what will be needed

by calling routine) – Example TRAP x21

Service Routine Features

Three main features of Service routines (TRAP):

• Abstract away the system-specific details from the user program

• Write frequently-used code just once

• Protect system resources from malicious/inept programmers

Subroutines:
User (non-system) defined routines, i.e. subroutines perform the same functions
as service routine but without accessing privileged area of memory.

When we use subroutines?

19

Observation
Example problem:

Compute y=3x3-6x2+7x for any
input x > 0

Programs have lots of repetitive
code fragments

start

Get input

X ← MEM[x4000]

R4 ← X2

R5 ← X3

R5 ← 3X3

R4 ← 6X2

R3 ← 7X

R6 ← 3X3 - 6X2

R6 ← (3X3 - 6X2) + 7x

Store output

stop

Multiply

Multiply

Multiply

Multiply

Multiply

Add

Add

; multiply R0 R1 * R2
MULT AND R0, R0, #0 ; R0 = 0
LOOP ADD R0, R0, R2 ; R0 = R0 + R2

ADD R1, R1, #-1 ; decrease counter
BRp LOOP

Implementation Option

;; LC-3 Assembly Program

.ORIG x3000

LDI R2, Xaddr; R2  x

ADD R1, R2, #0;

; Multiply R4  R1 * R2 (x2)

...

...

; Multiply R5  R4 * R2 (x3)

...

; Multiply R5  R5 * 3 (3x3)

...

; Multiply R4  6 * R4

start

Get input

R2 ← MEM[x4000]

R4 ← X2

R5 ← X3

R5 ← 3X3

R4 ← 6X2

R3 ← 7X

R6 ← 3X3 - 6X2

R6 ← (3X3 - 6X2) + 7x

Store output

stop

Multiply

Multiply

Multiply

Multiply

Multiply

Add

Add

Issues ?

Idea

Subroutine

• User invokes or calls subroutine

• Subroutine code performs operation / task

• Returns control to user program with no other unexpected changes

Piece of code /
Subroutine / Trap

service routine

My program

input

output

JSR and JSRR

0

opcode

1 0 0 1

PCoffset11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSR

0

opcode

1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSRR

BaseR

R7←PC
If (IR[11] == 0) PC←BaseR
Else PC←PC+SEXT(IR[10:0])

1

opcode

1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

R7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RET

RET ≡ JMP R7
PC  R7

JSR Example:

JSRR Example:

JSR and JSRR – When do we use JSRR?

0

opcode

1 0 0 1

PCoffset11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSR

0

opcode

1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSRR

BaseR

R7←PC
If (IR[11] == 0) PC←BaseR
Else PC←PC+SEXT(IR[10:0])

1

opcode

1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

R7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RET

RET ≡ JMP R7
PC  R7

Subroutine is in a separate file

NESTED SUB ROUTINE:

Check whether the result of
C=A-B, is

ODD or EVEN?

Anything wrong??

Corrected Code:
Save R7 before calling ODD_EVEN

 and

Restore R7 after return from
ODD_EVEN

	Slide 1
	Slide 2: Last Class Example (memory Mapped I/O)
	Slide 3: Solution: TRAP Service Routine
	Slide 4: How to make this idea work?
	Slide 6: TRAP Mechanism (TRAP x20)
	Slide 7: TRAP Mechanism (TRAP x20)
	Slide 8: TRAP Mechanism (TRAP x20)
	Slide 9: TRAP Mechanism
	Slide 10: TRAP x20 Mechanism – LC3 DEMO
	Slide 12: LC-3 TRAP Mechanism
	Slide 13: TRAP Instruction
	Slide 15: TRAP example
	Slide 16: TRAP example
	Slide 17
	Slide 19: Service Routine Features
	Slide 20: Observation
	Slide 21: Implementation Option
	Slide 22: Idea
	Slide 23: Subroutine
	Slide 24: JSR and JSRR
	Slide 25: JSR Example:
	Slide 26: JSRR Example:
	Slide 27: JSR and JSRR – When do we use JSRR?
	Slide 28: Subroutine is in a separate file
	Slide 29
	Slide 30
	Slide 31
	Slide 32

