
ECE 220 Computer Systems & Programming
Lecture 17: Linked Lists

The Linked List Data Structure

A linked list is an ordered collection of nodes, each of which contains some data,
connected using pointers.

▪ Each node points to the next node in the list.

▪ The first node in the list is called the head

▪ The last node in the list is called the tail

Node 0 Node 1 Node 2

NULL

Head
Pointer

Array vs Linked List

Array Linked List

Memory Allocation Static/Dynamic Dynamic

Memory Structure Contiguous Not necessary consecutive

Order of Access Random Sequential

Insertion/Deletion Create/delete space, then shift all
successive elements

Change pointer address

Node 0 Node 1 Node 2

NULL

Element 0

Element 1

Element 2

Head
Pointer

Array
(can be automatic or dynamic)

Linked List
(dynamic only)

Review: Double Pointer

 int val = 5;
 int *ptr;

 ptr = &val;

5

int val

x1234

x1234

int *ptr

x5678

 int **pptr;
 pptr = &ptr;

x5678

int **pptr

xABCD

 printf(“x%X\n”, &pptr);
 printf(“x%X\n”, pptr);
 printf(“x%X\n”, *pptr);
 printf(“%d\n”, **pptr);

The Linked List Data Structure

A linked list is an ordered collection of nodes, each of which contains some data,
connected using pointers.

▪ Each node points to the next node in the list.

▪ The first node in the list is called the head

▪ The last node in the list is called the tail

Node 0 Node 1 Node 2

NULL

Head
Pointer

Example: Linkedlist and its runtime stack
typedef struct person_node Person;

struct person_node

{

 char name[20];

 Person *next;

};

int main()

{

 Person *theList = NULL;

 AddPerson(&theList, “Bob");

 AddPerson(&theList, "Bill");

}

/* add to the linked list */
int AddPerson(Person **ourList, char newName[])
{
 Person *newPerson = NULL;

 newPerson = (Person *)malloc(sizeof(Person));
 if (newPerson == NULL)
 return 0;

 strcpy(newPerson->name, newName);
 newPerson->next = *ourList;

 *ourList = newPerson;

 return 1;
}

1

2

1

2

3

** All the addresses are hypothetical; they are used to help us
visualize the memory layout and implementation of the linked list

** All the addresses are hypothetical; they are used to help us
visualize the memory layout and implementation of the linked list

Exercise: Student Record

typedef struct studentStruct

{

 char *Name;

 int UIN;

 float GPA;

 struct studentStruct *next;

}student;

1. Create a list of 5 students. The last student will take the head position and the first student
will take the tail position. For Name, we will allocate space into the heap based on the given
name length.

2. Add a new student to the tail position.
3. Remove a student record from the list.
4. Free up the memory space

5

Data|Next

NULL

Head
Pointer

Data|Next

void insert_head(student **head, student *data)

Deleting a Node

Find the node that points to the desired node.
Redirect that node’s pointer to the next node (or NULL).
Free the deleted node’s memory.

int remove_student(student **head, int uin)

Free up the memory allocations: void delete_record(student **head)

Create a sorted link list of students record based on GPA -

(descending order)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Review: Double Pointer
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

