
ECE 220 Computer Systems & Programming

Lecture 16 – Dynamic Memory Allocation

Variable Length Array of Student Records:

We want to create an array of students’ records of type “student” as shown
below:

Note:

the array size (i.e. no. of students) will be decided during the execution time!

• No. of students can increase or decrease during the add/drop period of the
semester.

Can you resize the student records during execution time?

▪ Let’s assume we want to add 100 more students' records to the existing data
set.

▪ How will we do that?

▪ Any suggestion

▪ How about if 50 students drop the course?

▪ Note: once the array is declared and created in the run-time stack you can
not resize it.

▪ How about if want to add/drop a couple of students late? But the students’
records must be in alphabetical order (next class linked list)

Ideally, we want to allocate as much memory as needed rather than some pre-set

amount. We want to dynamically adapt the size of array based on the actual size of

class.

o This can be achieved using the concept of dynamic memory allocation.

• Dynamic memory allocation
o A piece of code called memory allocation manager that belongs to the OS

manages an area of memory called heap.

o During the execution, a program makes a request to the memory allocator for a

contiguous piece of memory of a particular size.

o The allocator reserves the memory and returns a pointer to it.

We interact with the memory allocation manager by using malloc/free functions.

Dynamic memory allocation concept
As a reminder

•Variables of static storage class are stored in global data section
•Variables of automatic storage class are stored in the run-time
stack

System space

Program text

Global data section

Heap
(for dynamically

allocated memory)

Run-time stack

System space

Variables of static storage
class are stored in the global

data section

Run-time stack contains
activation records (or stack
frames) for called functions

Variables of the default
automatic storage class are
stored in the run-time stack

space

PC

R4

R6 (stack pointer)

R5 (frame pointer)

x3000

malloc/free

▪ malloc function can be used to allocate some number of bytes of
memory into the heap. It reserves a chunk of memory in the heap
and returns a pointer to it. The memory is not initialized.

▪ malloc prototype

▪ void *malloc(size_t size);

▪ size is the number of bytes of memory to be allocated

▪ the function returns a generic pointer to a generic data type.
User can cast this to an appropriate data type. On error, this
function returns NULL.

▪ Example:

▪ char *name;
name = (char *)malloc(22*sizeof(char));

▪ 22 bytes of memory will be allocated and a pointer to it will be
returned, casted to type char.

Example

▪ char *name;
name = (char *)malloc(22*sizeof(char));

▪ 22 bytes of memory will be allocated and a pointer to it will be
returned, casted to type char.

▪ How about allocating memory for 22 integer type data?

▪ How about allocating memory for 22 student type data?

 student *student_list;

 student_list = (student *)malloc(22*sizeof(student));

student *student_list = (student *)malloc(22*sizeof(student));

free function frees the memory space pointed to by ptr.

▪ Free prototype:

▪ void free(void *ptr);

▪ ptr must have been returned by a previous call to malloc.
Otherwise, or if free(ptr) has already been called before,
undefined behavior occurs. If ptr is NULL, no operation is
performed.

▪ The free function returns no value.

▪ Example:

▪ free(name);

▪ this will free the memory allocated by previous calls to malloc.

Automatic vs. Dynamic Memory Allocation

Automatic Dynamic

Mechanism of allocation automatic use malloc()

Lifetime of memory programmer has no control -
it ends when exit

function/block

programmer has control -
use free() to deallocate

Location of memory Run time stack data area heap

Size of memory fixed adjustable
2

malloc & free

void *malloc(size_t size);

▪ allocates a contiguous region of memory on the heap

▪ size of allocated memory block is indicated by the argument

▪ returns a generic pointer (of type void *) to the memory, or NULL in case of
failure

▪ allocated memory is not cleared (there could be left over junk data!)

void free(void *ptr);

▪ frees the block of memory pointed to by ptr

▪ ptr must be returned by malloc() family of functions

3

Example of malloc and free

int main()
{
 int *ptr1 = (int *) malloc(sizeof(int));
 if(ptr1==NULL){
 printf("Error - malloc failure\n");
 return -1;
 }
 *ptr1 = 10;

 int *ptr2 = (int *) malloc(sizeof(int));
 *ptr2 = 5;

5

10ptr1 →

ptr2 →

heap

Example of malloc and free

int main()
{
 int *ptr1 = (int *) malloc(sizeof(int));
 if(ptr1==NULL){
 printf("Error - malloc failure\n");
 return -1;
 }
 *ptr1 = 10;

 int *ptr2 = (int *) malloc(sizeof(int));
 *ptr2 = 5;

 // What will happen?
 ptr1 = ptr2;

5

10ptr1 →

ptr2 →

heap

ptr1 →

Example of malloc and free

int main()
{
 int *ptr1 = (int *) malloc(sizeof(int));
 if(ptr1==NULL){
 printf("Error - malloc failure\n");
 return -1;
 }
 *ptr1 = 10;

 int *ptr2 = (int *) malloc(sizeof(int));
 *ptr2 = 5;

 // What will happen?
 ptr1 = ptr2;

 free(ptr2);
 free(ptr1);

5

10

ptr2 →

heap

ptr1 →

<- Run-time error, why?

Example of malloc and free

int main()
{
 int *ptr1 = (int *) malloc(sizeof(int));
 if(ptr1==NULL){
 printf("Error - malloc failure\n");
 return -1;
 }
 *ptr1 = 10;

 int *ptr2 = (int *) malloc(sizeof(int));
 *ptr2 = 5;

 // What will happen?
 ptr1 = ptr2;

 free(ptr2);
 free(ptr1);

5

10

ptr2 →

heap

ptr1 →

<- Run-time error, why?

Deallocate here…

Deallocate here again!

Double-free (free on already free memory)
→ Compiler does NOT check for you

Example of malloc and free

int main()
{
 int *ptr1 = (int *) malloc(sizeof(int));
 if(ptr1==NULL){
 printf("Error - malloc failure\n");
 return -1;
 }
 *ptr1 = 10;

 int *ptr2 = (int *) malloc(sizeof(int));
 *ptr2 = 5;

 // What will happen?
 ptr1 = ptr2;

 free(ptr2);
 // free(ptr1);

5

10

ptr2 →

heap

ptr1 →

??? →

Memory leakage
→ Fail to free all the dynamic-allocated memory

Example of malloc and free

int main()
{
 int *ptr1 = (int *) malloc(sizeof(int));
 if(ptr1==NULL){
 printf("Error - malloc failure\n");
 return -1;
 }
 *ptr1 = 10;

 int *ptr2 = (int *) malloc(sizeof(int));
 *ptr2 = 5;

 free(ptr1); // Free before change

 ptr1 = ptr2;

 free(ptr2); // or free(ptr1);

5

10

ptr2 →

heap

ptr1 →

calloc & realloc

void *calloc(size_t n_items, size_t item_size);

▪ similar to malloc(), also sets allocated memory to zero
▪ n_item: the number of items to be allocated, item_size: the size of each item

-> total size of allocated memory = n_items * item_size

Like malloc, calloc also allocates memory at runtime and is defined
in stdlib.h. It takes the number of elements and the size of each
element(in bytes), initializes each element to zero and then returns a
void pointer to the memory.

scanf(“%d”, &p[i]);

printf(“%d”, p[i]);

realloc Function

▪ void *realloc(pointer, new-size);

void *realloc(void *ptr, size_t size);

▪ reallocate memory block to a different size (change the size
of memory block pointed to by ptr)

▪ returns a pointer to the newly allocated memory block (it
may be changed)

▪ Unless ptr == NULL, it must be returned by the malloc()
family of functions

▪ if ptr == NULL -> same as malloc()
▪ if size = 0, ptr != NULL -> same as free()

realloc Function

▪ void *realloc(pointer, new-size);

Changes the size of the memory block pointed to by pointer to size bytes.
The contents will be unchanged in the range from the start of the region
up to the minimum of the old and new sizes.

▪ If the new size is larger than the old size, the added memory
will not be initialized.

▪ if size is equal to zero, and ptr is not NULL, then the call is
equivalent to free(ptr).

Exercise:

typedef struct studentStruct

{

 char *NAME;

 int UIN;

 float GPA;

}student;

1. allocate memory for 200 student records, assuming that you need an array
of 100 char to hold each name

2. initialize name to “To be set”, UIN to -1 and GPA to 0.0 for all the records

3. Add 200 more student records

4. free up memory space for all the records

7

1. allocate memory for 200 student records, assuming
that you need an array of 100 char to hold each
name

2. initialize name to “To be set”, UIN to -1 and GPA to
0.0 for all the records

1. allocate memory for 200 student records, assuming
that you need an array of 100 char to hold each
name

2. initialize name to “To be set”, UIN to -1 and GPA to
0.0 for all the records

3. add 200 more student records

3. add 200 more student records

4. free up memory space for all the records

How about?

 free(new_student_list)

4. free up memory space for all the records

How about?

 free(new_student_list)

Dynamic Allocation of 2D Array

int
int*

• Method 1
Use a single pointer

row0

 int *array = (int*) malloc(row*col*sizeof(int));

 for(i=0;i<row;i++)
 for(j=0;j<col;j++)
 *(array+i*col+j) = i*col+j;
 //array[i*col+j] = i*col+j;

 free(array);

row1

Dynamic Allocation of 2D Array

int
int*

int**

• Method 2
One method is using pointers to a pointer (double pointer).

nrows

ncols

 int **array;
 array = (int**) malloc(nrows*sizeof(int*));
 for(i=0;i<nrows;i++)
 array[i] = (int*) malloc(ncols*sizeof(int));

 array[0][0] = 3;
 …

Dynamic Allocation of 2D Array

• Method 2
One method is using pointers to a pointer (double pointer).

 int **array;
 array = (int**) malloc(nrows*sizeof(int*));
 for(i=0;i<nrows;i++)
 array[i] = (int*) malloc(ncols*sizeof(int));

How would you free 2D dynamic array?

→We must free all of memory that we allocated.
→Just freeing the top-level pointer (int **) is not enough.
→If we do so, the second-level pointer (int *) will be lost (memory leakage)

int
int*

int**

nrows

ncols

Free

Free

Free

Free

Free

 for(i=0;i<nrows;i++)
 free(array[i]);
 free(array);

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Example of malloc and free
	Slide 15: Example of malloc and free
	Slide 16: Example of malloc and free
	Slide 17: Example of malloc and free
	Slide 18: Example of malloc and free
	Slide 19: Example of malloc and free
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Dynamic Allocation of 2D Array
	Slide 35: Dynamic Allocation of 2D Array
	Slide 36: Dynamic Allocation of 2D Array
	Slide 37

