
ECE 220 Computer Systems & Programming

Lecture 15 – Data Structures



Processing Student Records:

• Given a data file:

• We want to sort the data according to the GPA ??

• The file could have 100’s of students’ records?



Data Type

Three fundamental data types:

▪ integer

▪ float/double

▪ char

We also discussed:

o Array

o Pointer
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Structures

▪ allow user to define a new type consists of a combination of fundamental 
data types (aggregate data type)

▪ Example: a repository of students and their grades in this class

▪ netID, can be captured as an array of chars (string):             
char name[100];

▪ Student UIN, can be stored as an int;

▪ GPA of the student, can be stored as a float: float GPA;

▪ There may be many other characteristics that we would want 
to capture..

How do we capture them?
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Structure – why we need it?
▪ If we only have one student, we can declare one variable per property:

▪ char netID[10];

▪ Int UIN;

▪ float GPA;

▪ If we have many (N) students, we can allocate arrays:

▪ char netID[N][10];  or char *netID[N]; ??

▪ Int UIN[N];

▪ float GPA[N];

▪ to access information about a particular student, we would need to access data in all 
three arrays: netID[i], UIN[i], GPA[i]

▪ if there are only a few properties that we care about, this solution (using separate 
arrays) may be acceptable

▪ but if we have many properties, the solution with arrays becomes cumbersome

▪ think about passing a large number of arguments to a function

▪ a better solution is to aggregate all the properties into a single object



Structures

▪ struct construct allows to create a new data type consisting of several 
member elements (aggregate data type)

Example: student record

struct studentStruct

{

 char netID[10];

 int UIN;

 float GPA;

}; //In this example, we have created a new data type and gave it the tag studentStruct;

To declare a variable of this type, we can use the new data type’s name:
struct studentStruct student;

strncpy(student.netID, “abc1”, sizeof(student.netID));

student.UIN = 123456789;

student.GPA = 3.89;

//student.netID =“abc1”; //Compiler Error

//or we can just use one line

struct StudentStruct student = {“abc1”, 123456789, 3.89}; 4



Structures (run-time stack)
struct studentStruct

{

 char netID[10];

 int UIN;

 float GPA;

};

int main()

{

int x;

struct studentStruct student;

int y;

student.UIN=0;

}
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x

LC3 code of student.UIN=0;

AND R1, R1, #0;  zero out R1

ADD R0,R5, #-12; R0 contains the base 

     address of student

STR R1, R0, #10            ;  student.UIN=0

R5

y

netID[0]

netID[1]

….

netID[8]

netID[9]

UIN

GPA

X



Using typedef

▪ C allows to give names to user-defined data types using typedef 
keyword.  

▪ Example:

typedef int color;

color  image[10][20];
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Using typedef

▪ C allows to give names to user-defined data types using typedef 
keyword.  Thus, we can give an alternative (shorter) name to “struct 
tag“:

▪ typedef struct tag myType;
myType <varName>;

▪ here old name “struct tag” will be given a new name myType.

struct studentStruct

{

 char netID[100];

 int UIN;

 float GPA;

};

typedef struct studentStruct student;

student s1, s2;
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Using typedef

▪ C allows to give names to user-defined data types using typedef 
keyword.  Thus, we can give an alternative (shorter) name to “struct 
tag“:

▪ typedef struct tag myType;
myType <varName>;

▪ here old name “struct tag” will be given a new name myType.

struct studentStruct

{

 char netID[100];

 int UIN;

 float GPA;

}student;    -here, student is a variable of struct studentStruct

typedef struct studentStruct student; -here student is synonym

student s1, s2;   -s1 and s2 are two variables of type student
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Using typedef  (both approaches are same)

struct StudentStruct

{

 char netID[100];

 int UIN;

 float GPA;

};

typedef struct StudentStruct student;

student s1, s2;

/***********************************/

typedef struct StudentStruct

{

 char netID[100];

 int UIN;

 float GPA;

}student;

student s1, s2;
5



Arrays of structs

//create an array of student struct

student s[100];

//access each element of the array

s[0]

s[1]

//access individual fields in each element

s[0].netID[0] = ‘a’;

s[0].netID[1] = ‘b’;

s[0].netID[2] = ‘c’;

S[0].netID[3] = ‘1’;

s[0].UIN = 11;

s[0].GPA = 3.89;
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struct StudentStruct

{

 char netID[10];

 int UIN;

 float GPA;

};

typedef struct StudentStruct student;

student s[100];



Read the student_file.txt and create an array of 
structs of student records:

int main()
{
student s[BUF];
char filename[20];
int no_of_student;
printf("Enter the Student_record filename: ");
scanf("%s",filename);
no_of_student=load_data(filename, s);
print_data(s, no_of_student);
}

struct StudentStruct

{

 char netID[10];

 int UIN;

 float GPA;

};

typedef struct StudentStruct student;

#include<stdio.h>

#include<string.h>

#define BUF 100



Read the student_file.txt and create an array of structs of student records:

int main()
{
student s[BUF];
char filename[20];
int no_of_student;
printf("Enter the Student_record filename: ");
scanf("%s",filename);
no_of_student=load_data(filename, s);
print_data(s, no_of_student);
}

int load_data(char filename[], student s[]){

 FILE *in;
 in=fopen(filename,"r");
 char temp[BUF];
 fgets(temp, BUF, in);
 int n=0;
while((fscanf(in,"%s %d %f",s[n].netID, &s[n].UIN,&s[n].GPA))!=EOF)
  n++;

 return n++;
}

struct StudentStruct

{

 char netID[10];

 int UIN;

 float GPA;

};

typedef struct StudentStruct student;



Printing the student records:

void print_data(student s[],int n){
 int i;

printf("netID    UIN   GPA\n");
for (i=0; i<n;i++)

printf("%s     %d    %f\n", s[i].netID, s[i].UIN, s[i].GPA);

}



Sort student’s records based on GPA

void sort_GPA(student s[], int n){

 int i;
 int flag=1;

 while(flag){
        flag=0; 

for (i=0; i<(n-1);i++)
 {
  if (s[i].GPA>s[i+1].GPA){
   swap_student(&s[i],&s[i+1]);
   flag=1;
  }
 }
 }
}



Swap student’s record:

void swap_student(student *s1, student *s2){
student temp;
temp=*s1;
*s1=*s2;
*s2=temp;
}



Pointer to Struct

student ece220[200];     

student *ptr; 

ptr = ece220; //pointer to a struct array

//ptr = &ece220[5];

ptr++; //where is ptr pointing to now?

strncpy(ptr->Name, “John Doe”, sizeof(ptr->Name));

ptr->UIN = 123456789;   //(*ptr).UIN

ptr->GPA = 3.89;       //(*ptr).GPA

//which student record has been changed?
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typedef struct StudentName

{

 char First[30];

 char Middle[30];

 char Last[40];

}name;

student ece220[200];     
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typedef struct StudentStruct

{

name Name;

 int UIN;

 float GPA;

}student;

Struct within a Struct



First[0]

…

First[29]

Middle[0]

…

Middle[29]

Last[0]

…

Last[39]

UIN

GPA

First[0]

…

First[29]

Middle[0]

…

Middle[29]

…

ece220[0]

ece220[1]
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name



typedef struct StudentName

{

 char First[30];

 char Middle[30];

 char Last[40];

}name;

student ece220[200];     

student *ptr; 

ptr = ece220;

//How can we set the ‘First’ name in the first student record?  

//Use ptr.

strncpy(       , “John”,       );
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typedef struct StudentStruct

{

name Name;

 int UIN;

 float GPA;

}student;

Struct within a Struct



Unions

▪ a union data type is similar to a struct, however, it defines a single 
location in memory that can be given many different names

▪ Example:

▪ union valueUnion

{

    long int i_value;

    float f_value;

}

union valueUnion v;

v.i_value = 5;   /* holds integer  */

v.f_value = 5.25;  /* now holds float */

/* but not both! */
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Enumeration Constants:

Enumerated data type: 

▪ An enumeration, introduced by the keyword enum, is a set of integer 
constants represented by identifiers.

▪ Values in an enum start with 0, unless specified otherwise, and are 
incremented by 1.

Syntax: enum [tag] { enumerator-list }

Example:



enumeration example:
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