
ECE 220 Computer Systems & Programming

Lecture 15 – Data Structures

Processing Student Records:

• Given a data file:

• We want to sort the data according to the GPA ??

• The file could have 100’s of students’ records?

Data Type

Three fundamental data types:

▪ integer

▪ float/double

▪ char

We also discussed:

o Array

o Pointer

2

Structures

▪ allow user to define a new type consists of a combination of fundamental
data types (aggregate data type)

▪ Example: a repository of students and their grades in this class

▪ netID, can be captured as an array of chars (string):
char name[100];

▪ Student UIN, can be stored as an int;

▪ GPA of the student, can be stored as a float: float GPA;

▪ There may be many other characteristics that we would want
to capture..

How do we capture them?

4

Structure – why we need it?
▪ If we only have one student, we can declare one variable per property:

▪ char netID[10];

▪ Int UIN;

▪ float GPA;

▪ If we have many (N) students, we can allocate arrays:

▪ char netID[N][10]; or char *netID[N]; ??

▪ Int UIN[N];

▪ float GPA[N];

▪ to access information about a particular student, we would need to access data in all
three arrays: netID[i], UIN[i], GPA[i]

▪ if there are only a few properties that we care about, this solution (using separate
arrays) may be acceptable

▪ but if we have many properties, the solution with arrays becomes cumbersome

▪ think about passing a large number of arguments to a function

▪ a better solution is to aggregate all the properties into a single object

Structures

▪ struct construct allows to create a new data type consisting of several
member elements (aggregate data type)

Example: student record

struct studentStruct

{

 char netID[10];

 int UIN;

 float GPA;

}; //In this example, we have created a new data type and gave it the tag studentStruct;

To declare a variable of this type, we can use the new data type’s name:
struct studentStruct student;

strncpy(student.netID, “abc1”, sizeof(student.netID));

student.UIN = 123456789;

student.GPA = 3.89;

//student.netID =“abc1”; //Compiler Error

//or we can just use one line

struct StudentStruct student = {“abc1”, 123456789, 3.89}; 4

Structures (run-time stack)
struct studentStruct

{

 char netID[10];

 int UIN;

 float GPA;

};

int main()

{

int x;

struct studentStruct student;

int y;

student.UIN=0;

}

4

x

LC3 code of student.UIN=0;

AND R1, R1, #0; zero out R1

ADD R0,R5, #-12; R0 contains the base

 address of student

STR R1, R0, #10 ; student.UIN=0

R5

y

netID[0]

netID[1]

….

netID[8]

netID[9]

UIN

GPA

X

Using typedef

▪ C allows to give names to user-defined data types using typedef
keyword.

▪ Example:

typedef int color;

color image[10][20];

5

Using typedef

▪ C allows to give names to user-defined data types using typedef
keyword. Thus, we can give an alternative (shorter) name to “struct
tag“:

▪ typedef struct tag myType;
myType <varName>;

▪ here old name “struct tag” will be given a new name myType.

struct studentStruct

{

 char netID[100];

 int UIN;

 float GPA;

};

typedef struct studentStruct student;

student s1, s2;

5

Using typedef

▪ C allows to give names to user-defined data types using typedef
keyword. Thus, we can give an alternative (shorter) name to “struct
tag“:

▪ typedef struct tag myType;
myType <varName>;

▪ here old name “struct tag” will be given a new name myType.

struct studentStruct

{

 char netID[100];

 int UIN;

 float GPA;

}student; -here, student is a variable of struct studentStruct

typedef struct studentStruct student; -here student is synonym

student s1, s2; -s1 and s2 are two variables of type student

5

Using typedef (both approaches are same)

struct StudentStruct

{

 char netID[100];

 int UIN;

 float GPA;

};

typedef struct StudentStruct student;

student s1, s2;

/***********************************/

typedef struct StudentStruct

{

 char netID[100];

 int UIN;

 float GPA;

}student;

student s1, s2;
5

Arrays of structs

//create an array of student struct

student s[100];

//access each element of the array

s[0]

s[1]

//access individual fields in each element

s[0].netID[0] = ‘a’;

s[0].netID[1] = ‘b’;

s[0].netID[2] = ‘c’;

S[0].netID[3] = ‘1’;

s[0].UIN = 11;

s[0].GPA = 3.89;

7

struct StudentStruct

{

 char netID[10];

 int UIN;

 float GPA;

};

typedef struct StudentStruct student;

student s[100];

Read the student_file.txt and create an array of
structs of student records:

int main()
{
student s[BUF];
char filename[20];
int no_of_student;
printf("Enter the Student_record filename: ");
scanf("%s",filename);
no_of_student=load_data(filename, s);
print_data(s, no_of_student);
}

struct StudentStruct

{

 char netID[10];

 int UIN;

 float GPA;

};

typedef struct StudentStruct student;

#include<stdio.h>

#include<string.h>

#define BUF 100

Read the student_file.txt and create an array of structs of student records:

int main()
{
student s[BUF];
char filename[20];
int no_of_student;
printf("Enter the Student_record filename: ");
scanf("%s",filename);
no_of_student=load_data(filename, s);
print_data(s, no_of_student);
}

int load_data(char filename[], student s[]){

 FILE *in;
 in=fopen(filename,"r");
 char temp[BUF];
 fgets(temp, BUF, in);
 int n=0;
while((fscanf(in,"%s %d %f",s[n].netID, &s[n].UIN,&s[n].GPA))!=EOF)
 n++;

 return n++;
}

struct StudentStruct

{

 char netID[10];

 int UIN;

 float GPA;

};

typedef struct StudentStruct student;

Printing the student records:

void print_data(student s[],int n){
 int i;

printf("netID UIN GPA\n");
for (i=0; i<n;i++)

printf("%s %d %f\n", s[i].netID, s[i].UIN, s[i].GPA);

}

Sort student’s records based on GPA

void sort_GPA(student s[], int n){

 int i;
 int flag=1;

 while(flag){
 flag=0;

for (i=0; i<(n-1);i++)
 {
 if (s[i].GPA>s[i+1].GPA){
 swap_student(&s[i],&s[i+1]);
 flag=1;
 }
 }
 }
}

Swap student’s record:

void swap_student(student *s1, student *s2){
student temp;
temp=*s1;
*s1=*s2;
*s2=temp;
}

Pointer to Struct

student ece220[200];

student *ptr;

ptr = ece220; //pointer to a struct array

//ptr = &ece220[5];

ptr++; //where is ptr pointing to now?

strncpy(ptr->Name, “John Doe”, sizeof(ptr->Name));

ptr->UIN = 123456789; //(*ptr).UIN

ptr->GPA = 3.89; //(*ptr).GPA

//which student record has been changed?
8

typedef struct StudentName

{

 char First[30];

 char Middle[30];

 char Last[40];

}name;

student ece220[200];

9

typedef struct StudentStruct

{

name Name;

 int UIN;

 float GPA;

}student;

Struct within a Struct

First[0]

…

First[29]

Middle[0]

…

Middle[29]

Last[0]

…

Last[39]

UIN

GPA

First[0]

…

First[29]

Middle[0]

…

Middle[29]

…

ece220[0]

ece220[1]

10

name

typedef struct StudentName

{

 char First[30];

 char Middle[30];

 char Last[40];

}name;

student ece220[200];

student *ptr;

ptr = ece220;

//How can we set the ‘First’ name in the first student record?

//Use ptr.

strncpy(, “John”,);

9

typedef struct StudentStruct

{

name Name;

 int UIN;

 float GPA;

}student;

Struct within a Struct

Unions

▪ a union data type is similar to a struct, however, it defines a single
location in memory that can be given many different names

▪ Example:

▪ union valueUnion

{

 long int i_value;

 float f_value;

}

union valueUnion v;

v.i_value = 5; /* holds integer */

v.f_value = 5.25; /* now holds float */

/* but not both! */
6

Enumeration Constants:

Enumerated data type:

▪ An enumeration, introduced by the keyword enum, is a set of integer
constants represented by identifiers.

▪ Values in an enum start with 0, unless specified otherwise, and are
incremented by 1.

Syntax: enum [tag] { enumerator-list }

Example:

enumeration example:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

