il

i
Tl
i
lideenn
(i
]

]
i

M,

Visaaanann

\ mn

(LTS
Wnnen|

4/}
(1]

VL[]

Lecture 14-1/0in C

o

ECE 220 Computer Systems & Programming

It o1 NOTS

ECE ILLINOIS

/O Stream

Input/Output

HH < Stream Program

i.e. keyboard, monitor, files, etc.

Stream
* |nterfacing with 1/O and program
* asequence of data (text or binary) to which the actual input/output is mapped

HH‘ Stream (stdin) > scanf (“%d”, &x)

For example,

Keyboard

Stream Abstraction for I/O

All character-based I/0 in C is performed on text streams.
A stream is a sequence of ASCII characters, such as:

= the sequence of ASCII characters printed to the monitor
by a single program

= the sequence of ASCII characters entered by the user
during a single program

= the sequence of ASCII characters in a single file
Characters are processed in the order in which they were added to the stream.

" e.g., aprogram sees input characters in the same order
as the user typed them.

Standard Streams:

Input (keyboard) is called stdin.
Output (monitor) is called stdout.
Error (monitor) is called stderr.

Buffering
* Every value that goes into the stream is captured by the low-level OS
software and kept in a buffer (a small array)

Input Buffering

| J |

Keyboardl -I Buffer I =|I Stream I =|I Program

The buffer is released when the user presses Enter key.

Output Buffering

‘Program |—>| Buffer |—>| Stream I—'l Monitor

The buffer is released when the program submits a newline character (‘\n’)

» Buffer allows to decouple the producer from the consumer.

Input Buffer getchar
* Reads one ASCII character from stdin (keyboard)

* LC-3IN TRAP
Input Buffering
Keyboard Buffer stdin Program
charinl, in2, in3; You type
inl = getchar(); ABCD€

in2 = getchar();
in3 = getchar();

1. Only ‘A’ ‘B’, ‘C’ will be read by

printf(“result:\n");
printf("%c", inl); getchar()
H f ll% ll, H 2 ;
E:::Ifg/i ::_,3 2. Before type enter(¢), the buffer

is not released to the stream

Input Buffer getchar
* Reads one ASCII character from stdin (keyboard)

* LC-3IN TRAP
Input Buffering

Keyboard I—'l Buffer I—-l stdin I—'l Program‘

charini, in2, in3; You type

inl = getchar(); A
in2 = getchar();
in3 = getchar();

printf(“result:\n");
printf("%c", inl);
printf("%c", in2);
printf("%c", in3);

Output Buffer
putchar

* Displays one ASCII character to stdout (monitor)

* LC-3 0OUT TRAP
Output Buffering

Program Buffer stdout Monitor

What do you see?

int main(){
putchar('a’); 1. ‘@’, then 5 seconds, then ‘b’
2. ‘ab’, then 5 seconds
sleep(5); i
putchar('b); 3. 5 seconds, then ‘ab’.
putchar('\n’);
}

Output Buffer
putchar

* Displays one ASCII character to stdout (monitor)

* LC-3 0OUT TRAP
Output Buffering

Program Buffer stdout Monitor

What do you see?

int main(){
putchar('a’); 1. ‘@’, then 5 seconds, then ‘b’
sleep(5); 2. ‘ab’, then 5 seconds
putchar("b')- 3. 5 seconds, then ‘ab’.
putchar('\n’);

} —> 3. The buffer is released at ‘\n’.

Basic I/O Functions

* Creating I/O streams
 fopen: open/create a file for 1I/O
e fclose: close a file for I/O

* |/O one character at a time
 fgetc: Reads an ASCIl character from stream
 fputc: Writes an ASCII character to stream
* getchar: Reads an ASCII character from the keyboard
* putchar: Writes an ASCII character to the monitor

* |/O one line at a time
 fgets: Reads a string (line) from stream
e fputs: Writes a string (line) to stream

* Formatted I/O
e fprintf: Writes a formatted string to stream
 fscanf: Reads a formatted string to stream

File 1/O

* A file is a sequence of ASCII characters stored in some storage device.

* Each file is associated with a stream.
* |t can be input stream or output stream or both.

* To read or write a file, we declare a file pointer (The FILE type is
defined in <stdio.h>)

FILE *infile;

* Read/write a file requires 3 step:
1. Open the file

2. Do reading or writing
3. Close the file

Creating 1/O stream

FILE* fopen(char* filename, char* mode)
Open a file to read or write

" Parameters
" f1]lename
" mode: how the file will be used

= “r” — read from the file
= “w” - write, starting from the beginning of the file
= "3” - write, starting at the end of the file (append)

" Return wvalue

" success: returns a pointer to FILE
" failure: returns NULL

Creating 1/O stream

int fclose (FILE* stream)

Close a file

" Parameters
" stream: Polnter to a file

" Return value
" success: returns 0
"= failure: returns EOF
(Note: EOF 1s a macro, commonly -1)

FILE *myfile;
myfile = fopen("test.txt", "w");
if(myfile == NULL){
printf("Cannot open file for write.\n");
return -1;

}

fclose(myfile);
return O;

/O one character at a time

int fgetc (FILE* stream)

Read a single character from a file, then
advanced to the next character.

= Parameters
" stream: Input stream

" Return wvalue

B success: returns the current character
" fagjlure: returns EOF

/O one character at a time

int fputc(int character, FILE* stream)
Write a single character to a file

" Parameters
" character: character to be written
" stream: Output stream

" Return wvalue
" success: write the character to file and returns the
character written
" failure: returns EOF

Example

char c;
FILE *fp1, *fp2;

if((fpl=fopen("original.txt", "r")) == NULL){
printf("Unable to open a file.\n");
return -1;

}

if((fp2=fopen("modified.txt", "w")) == NULL){
printf("Unable to open a file.\n");
return -1;

}

dof
c = fgetc(fpl);
if(c>='0" && c<='9’)
fputc(c,fp2);
Wwhile(cl= EOF);
fclose(fp1);
fclose(fp2);

/0O one line at a time

char* fgets(char* string, int num, FILE%*

stream)
Read a line from a file

" Parameters
" string: Polnter to a destination array
" num: Max # of char to be copied into string (num-1)
" stream: Input stream

" Return wvalue

" success: returns a polnter to string
" falilure: returns NULL

* fgets vs scant

char buf[SIZE BUF];

//store into buf until SIZE BUF-1 characters
//or a newline or the end-of-file
fgets (buf, SIZE BUF, stdin);

//store into buf until whitespace
scanf ("%s", buf);

Example: Remainders in buffer

#define BUF_SIZE 6

int main(){
char bufl[BUF_SIZE];
char buf2[BUF_SIZE];

printf("Enter 4 digits (** **): ");
fgets(bufl, BUF_SIZE, stdin);
printf("%s\n", bufl);

printf("Enter 4 digits (** **): "),
fgets(buf2, BUF_SIZE, stdin);
printf("%s\n", buf2);

/0O one line at a time

int fputs(const char* string, FILE*

stream)
Write a string to a file

= Parameters
" string: Polnter to a source array
" stream: Output stream

" Return wvalue

" success: returns a non-negative value
" fagjlure: returns EOF

Formatted 1/O

int fprintf (FILE* stream, const char*

format, ..)

Write formatted output to a stream

" Parameters
" stream: Output stream
" format: String that contains the text to be written
= format specifier: %d, %1f, %s, etc
" (additional arguments): Replace a format specifier

" Return wvalue
" success: returns the number of characters written
" fallure: returns a negative number

Formatted 1/O

int fscanf (FILE* stream, const char*

format, ..)

Read formatted 1nput from a stream

" Parameters
" stream: Input stream
" format: String that specifies how to
= format specifier: %d, %1f, %s, etc
" (additional arguments): A pointer to

" Return wvalue

" success: returns the number of i1tems
" fajlure: returns EOF

read the 1input

store read data

read

Example

data.txt

4311 Alice 3.42
1133 Bob 4.0

swapped.txt

Alice 4311 3.42
Bob 1133 4.0

int uid;
char name[20];
double gpa;

Example

data.txt swapped.txt
4311 Alice 3.42 N Alice 4311 3.42
1133 Bob 4.0 Bob 1133 4.0

int uid;

char name[20];

double gpa;

FILE *fp_in = fopen("data.txt", "r");
FILE *fp_out = fopen("swapped.txt", "w"

while(fscanf(fp_in, "%d %s %If", &uid, name, &gpa) != EOF)
fprintf(fp_out, "%s %d %If\n", name, uid, gpa);

fclose(fp_in);
fclose(fp_out);

Read an mxn matrix from file in_matrix.txt and write its transpose to
file out_matrix.txt. The first row of the file specifies the size of the
matrix.

in_matrix.txt
FILE *in; 23
if((in = fopen("in_matrix.txt", "r")) == NULL){ 123
printf("Unable to open a file\n"); 456
return -1;
}
fscanf(in, "%d %d", &m, &n); ‘

int matrix[m][n];

o , out_matrix.txt
for(i=0;i<m;i++)

for(j=0;j<n;j++) 32
fscanf(in, "%d ", &matrix[il[jl); 14
25

fclose(in); 36

Read an mxn matrix from file in_matrix.txt and write its transpose to
file out_matrix.txt. The first row of the file specifies the size of the
matrix.

in_matrix.txt
23
if((out = fopen("out_matrix.txt", "w"))== NULL) 456
printf("Unable to open a file\n");
return -1;
} 2
fprintf(out, "%d %d \n", n, m);

for(i=0;i<n;i++){

for(j=0;j<m;j++) out_matrix.txt

fprintf(out, "%d ", matrix[j][i]); 32
fprintf(out, "\n"); 14
} 25

fclose(out); 36

(sidenote) When do you use stderr?

* |t's a good practice to redirect all error messages to stderr, while
directing all regular outputs to stdout.

* Example:

fprintf(stdout , "Normal output1\n");
fprintf(stdout , "Normal output2\n");
fprintf(stderr, "Errorl \n");
fprintf(stdout , "Normal output3\n");
fprintf(stderr, "Warning1\n");

Ja.out .Ja.out >a.log 2>err.log

[monitor] [a.IOg] [err.log]
Normal outputl Normal outputl Errorl
Normal output2 Normal output? Warning1

Errorl
Normal output3
Warningl

Normal output3

Variable Argument Lists

* The number of arguments in
aprintforscant
depends on the number of
data items being read or
written.

* Parameters pushed onto
stack from right to left.

* The format string is always at
the top of the stack.

x0000

printf ("$d %d %$d\n", x, vy,

R6 —

ptr to format string

X

Yy

z

xFFFF

z) ;

R6 —=

z

Parameters for

Y

printf

X

ptr to format string

Activation record
for previous function

	Slide 2
	Slide 5: I/O Stream
	Slide 7
	Slide 9: Buffering
	Slide 10: Input Buffer
	Slide 11: Input Buffer
	Slide 12: Output Buffer
	Slide 13: Output Buffer
	Slide 15: Basic I/O Functions
	Slide 17: File I/O
	Slide 18: Creating I/O stream
	Slide 19: Creating I/O stream
	Slide 20
	Slide 21: I/O one character at a time
	Slide 22: I/O one character at a time
	Slide 23: Example
	Slide 24: I/O one line at a time
	Slide 25
	Slide 26: Example: Remainders in buffer
	Slide 27: I/O one line at a time
	Slide 29: Formatted I/O
	Slide 30: Formatted I/O
	Slide 31: Example
	Slide 32: Example
	Slide 35
	Slide 36
	Slide 37: (sidenote) When do you use stderr?
	Slide 39: Variable Argument Lists

