
ECE 220 Computer Systems & Programming

Lecture 13 – Recursive sorting and Recursion with Backtracking

Binary Search (recursive)

2

Recursive Insertion sort

4

5

Quick Sort (divide-and-conquer)

1. Pick a pivot and partition array into 2 subarrays (smaller elements
than the pivot in the left and greater elements in the right)

2. Sort the 2 subarrays using the same method

50 80 30 90 40 10 70

50 30 40 10 70 90 80

50 30 40 10 90 80

10 30 40 50 80 90

30 40 50 90

30 40 50

30 40

Quick Sort: Partition

50 80 30 90 40 10 70

0 1 2 3 4 5 6index

for j from low to high-1{
 if array[j] < pivot
 i = i + 1;
 swap array[i] and array[j]
}
swap array[i+1] and pivot
return i+1 as the pivot index

i
j

50<7080>7030<70

30 80

90>7040<70

40 80

10<70

10 90 8070

i: index of smaller elements (i=low-1)
j: loop index (j=low) -> low to (high-1)

Using STACK in Quick Sort

Recursive Quick Sort

Activation Records Build up and Tear Down

0 1 2 3 4 5 6

5. ret

4. L

6. ret

6

5 pi=5

6. U

0 pi=4

6. main

1. ret

1. L

3. ret

2

1 pi=2

2. L

4 ret

3

1. pi=3

3

0. pi=0

3. L

When (low<high) is
violated, it destroys
caller activation
records.
When returning to
the next line of L, it
tears down caller
activation records

11

Recursive Backtracking:

Backtracking is an algorithmic-technique
for solving problems recursively by trying
to build a solution incrementally, one piece
at a time, removing those solutions that
fail to satisfy the constraints of the
problem statement.

N queens problem using recursive Backtracking

• Place N queens on an NxN
chessboard so that none of the
queens are under attack;

• Brute force: total number of
possible placements:

• ~N2 Choose N ~ 4.4 B (N=8)

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

Recursion with Backtracking: n-Queen Problem

1. Find a safe column (from left to right) to place a queen, starting at the first row;
2. If we find a safe column, make recursive call to place a queen on the next row;
3. If we cannot find one, backtrack by returning from the recursive call to the

previous row and find a different column.

2

0 1 2 3

0 Q

1 Q

2 Q

3 Q

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

N Queens with backtracking

• int board[N][N] represents placement of queens

– board[i][j] = 0: no queen at row i column j

– board[i][j] = 1:queen at row i column j

• Initialize, for all i,j board[i][j] = 0

• Functions

– PrintBoard(board): Prints board on the screen

– IsSafe(board, row, col): returns 1 iff new queen can be
placed at (row,col) in board

– Solve(board, row): recursively attempts to place (N-row)
queens; returns 0 iff it fails

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

Solve(board,3) returns 0

Initial board

Recursive with Backtracking

• N-Queen Problem by Backtracking

1. Decision
Place a queen at a safe place.

2. Recursion
Explore the solution for the next row.

3. Backtrack (Undo)
Remove the queen if no solution for the next row.

4. Base case
Reach the goal.

N-Queen (4x4) Backtracking – CODE (Main function)

N
-Q

u
e

e
n

 (4
x4

) B
acktrackin

g – C
O

D
E (So

lve
 fu

n
ctio

n
)

N-Queen (4x4) Backtracking – CODE (isSafe & PrintSolution functions)

X X

X X

X

E

Maze Solver

Exit

Starting point
Wall

• GOAL
• if solve(..), find a path from the starting

point to the exit → Return 1 and mark ‘*’

• One solution is enough
(may not be the shortest path)

• IDEA
• Try 1 of 4 moves (U/D/L/R)

• Solve it from there (recursively!)

• Mark ‘V’, if visited (avoid circling)

X X

X

X

E

X X

X * * X

* * X

E

1 of solutions

circle!

42

43

Recursive Function:

int solve(…….)

	Slide 1
	Slide 2: Binary Search (recursive)
	Slide 3
	Slide 4: Recursive Insertion sort
	Slide 5
	Slide 6: Quick Sort (divide-and-conquer)
	Slide 7: Quick Sort: Partition
	Slide 8: Using STACK in Quick Sort
	Slide 9: Recursive Quick Sort
	Slide 10
	Slide 11
	Slide 12: N queens problem using recursive Backtracking
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: N Queens with backtracking
	Slide 35: Recursive with Backtracking
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Maze Solver
	Slide 41
	Slide 42
	Slide 43

