
ECE 220 Computer Systems & Programming

Lecture 13 – Recursive sorting and Recursion with Backtracking



Binary Search (recursive)
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Recursive Insertion sort 
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Quick Sort (divide-and-conquer)

1. Pick a pivot and partition array into 2 subarrays (smaller elements 
than the pivot in the left and greater elements in the right)

2. Sort the 2 subarrays using the same method

50 80 30 90 40 10 70

50 30 40 10 70 90 80

50 30 40 10 90 80

10 30 40 50 80 90

30 40 50 90

30 40 50

30 40



Quick Sort: Partition

50 80 30 90 40 10 70

0 1 2 3 4 5 6index

for j from low to high-1{
    if array[j] < pivot
        i = i + 1;
        swap array[i] and array[j]
}
swap array[i+1] and pivot
return i+1 as the pivot index

i
j

50<7080>7030<70

30 80

90>7040<70

40 80

10<70

10 90 8070

i: index of smaller elements (i=low-1)
j: loop index (j=low) -> low to (high-1)



Using STACK in Quick Sort



Recursive Quick Sort



Activation Records Build up and Tear Down

0 1 2 3 4 5 6

5.   ret

4.     L

6.    ret

6

5   pi=5

6.   U

0    pi=4

6.  main

1. ret 

1. L

3.   ret

2

1  pi=2

2. L

4  ret

3

1.  pi=3

3

0.  pi=0

3.   L

When (low<high) is 
violated, it destroys 
caller activation 
records.
When returning to  
the next line of L, it 
tears down caller 
activation records
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Recursive Backtracking:

Backtracking is an algorithmic-technique 
for solving problems recursively by trying 
to build a solution incrementally, one piece 
at a time, removing those solutions that 
fail to satisfy the constraints of the 
problem statement.



N queens problem using recursive Backtracking

• Place N queens on an NxN 
chessboard so that none of the 
queens are under attack; 

• Brute force: total number of 
possible placements: 

• ~N2 Choose N ~ 4.4 B (N=8)

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0









































Recursion with Backtracking: n-Queen Problem

1. Find a safe column (from left to right) to place a queen, starting at the first row;
2. If we find a safe column, make recursive call to place a queen on the next row;
3. If we cannot find one, backtrack by returning from the recursive call to the 

previous row and find a different column. 

2

0 1 2 3

0 Q

1 Q

2 Q

3 Q

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0



N Queens with backtracking

• int board[N][N] represents placement of queens

– board[i][j] = 0: no queen at row i column j

– board[i][j] = 1:queen at row i column j 

• Initialize, for all i,j board[i][j] = 0

• Functions

– PrintBoard(board): Prints board on the screen

– IsSafe(board, row, col): returns 1 iff new queen can be 
placed at (row,col) in board

– Solve(board, row): recursively attempts to place (N-row) 
queens; returns 0 iff it fails 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

Solve(board,3) returns 0

Initial board



Recursive with Backtracking

• N-Queen Problem by Backtracking

1. Decision
Place a queen at a safe place.

2. Recursion
Explore the solution for the next row.

3. Backtrack (Undo)
Remove the queen if no solution for the next row.

4. Base case
Reach the goal.



N-Queen (4x4) Backtracking – CODE  (Main function) 
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N-Queen (4x4) Backtracking – CODE  (isSafe & PrintSolution functions) 





X X

X X

X

E

Maze Solver

Exit

Starting point
Wall

• GOAL
• if solve(..), find a path from the starting 

point to the exit → Return 1 and mark ‘*’

• One solution is enough 
(may not be the shortest path)

• IDEA
• Try 1 of 4 moves (U/D/L/R)

• Solve it from there (recursively!) 

• Mark ‘V’, if visited (avoid circling)

X X

X

X

E

X X

X * * X

* * X

E

1 of solutions

circle!
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Recursive Function:

int solve(…….)
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