
ECE 220 Computer Systems & Programming

Lecture 12 – Recursion

Recursion
A recursive function is one that solves its task by calling itself on smaller pieces
of data.

▪ Similar to recurrence function in mathematics.

▪ Like iteration -- can be used interchangeably;
sometimes recursion results in a simpler solution.

▪ Must have at least 1 base case (terminal case) that ends the recursive
process.

Example: n!

4

Factorial:

n! = n ∙ (n-1) ∙ (n-2) ∙ … ∙ 3 ∙ 2 ∙ 1

n! =ቊ
𝑛 ∙ 𝑛 − 1 ! , 𝑛 > 0
1 , 𝑛 = 0

int Factorial(int n)

{

 if

 Return ….

 else

 return

}

10

Executing Factorial

Factorial(3)

Factorial(2)

Factorial(1)

Factorial(0)return value = 1

return value = 1

return value = 2

return value = 6

return 1;

return 1 * Factorial(0);

return 2 * Factorial(1);

return 3 * Factorial(2);

Factorial(3);

Observation:
1) Each invocation solves a smaller

version of the problem;
2) Once the base case is reached,
 recursive process stops.

11

Run-Time Stack During Execution of Factorial

Fact(1)

R6

Fact(2)

Fact(3)

main

main calls
Factorial(3)

Factorial(3) calls
Factorial(2)

Factorial(2) calls
Factorial(1)

R6

Fact(3)

main

R6

Fact(2)

Fact(3)

main

Fact(1)

Fact(2)

Fact(3)

main

Factorial(1) calls
Factorial(0)

Fact(0)

R6

12

C to LC3 implementation of n! (test case n=3)

Fibonacci Series

Consider, n=3

Recursive Binary Search

Recursive Quick Sort

Helper Function: partition(….)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

