
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220:Computer Systems and Programming

slide 1

Instructor: Ujjal Kumar Bhowmik

Section: BL3, 2:00-3:20PM, ECEB 2017

Office Hours: 5-6PM, Monday, ECEB 2054

Course Website:
https://courses.grainger.illinois.edu/ece220/fa2025/

https://courses.grainger.illinois.edu/ece220/fa2025/

ECE220: Introduction to Computing

Instructors T/R Section:

Prof. Chen 12:30 p.m. BL

Prof. Abraham 11:00 a.m. BL2

Prof. Bhowmik 2:00 p.m. BL3

slide 2

ECE220 – Course Objectives

• Understand the low-level concepts such as I/O, subroutine, stack in
LC-3

• Understand the basic data organization such as array, pointer,
functions, recursion, simple data structure, linked-list, tree and how
they are laid out in memory.

• Be able to write C program to accomplish simple task and be familiar
with testing and debugging of simple programs.

• Understand the basics of C++

Course Overview:

• Programming Studio (or Labs) on Fridays (10 makeup pts/lab
worksheet towards MPs, except MP12)

• MPs: due every Thursday by 10:00 PM (100 pts each, late penalty
2pts/hour) – 15%

• Quizzes: 6 programming quizzes on CBTF (50-minute), lowest score
dropped – 20%

• Exams: 2 midterms and a final Exam (paper format) – 40% + 25%

• Textbook: Patt & Patel, Introduction to Computing Systems: from bits
to gates to C/C++ and beyond, 2nd or 3rd Edition.

• Academic Integrity

Grading Policy

Grading Mechanics:

• Programming Assignments (12 MPs. Lowest grade dropped,
excluding MP12): 15%

• Quizzes (6 quizzes, lowest grade dropped): 20%

• Midterm 1: 20%

• Midterm 2: 20%

• Final Exam: 25%

Course Logistics & Tools

• Course Web page: course info, MP write-up, exam info, etc.

• Github: MP/LAB release and submission

• Gradescope: lab worksheets

• Campuswire: discussion board

• CBTF: Quiz proctoring

• Resources: CARE, counseling center, DRES

LC3 Review – Von Neumann Model

LC3 Instruction Set Architecture (ISA)

Review: LD, LDI, LDR, and LEA

Review:

• Initialize a register to zero:

• Copy the content of one register to another:

• Perform Subtractions (8-3):

• Perform Multiplication (5x4):

Display the content of an LC3 register in HEX

Outline

• Section 9.2 (3rd Ed.), 8.1-8.4 (2nd Ed.) of Patt and Patel

• I/O principles

• Input from keyboard

• Output to monitor

• Key concepts
• Memory mapped I/O

• Asynchronous and synchronous communication

Humanoid Robot

I/O with the physical world

Sensors:
cameras,
RADARS,

IMUs, Gyros

Actuators:
servo

motors,
hydraulics,

steering

CPU & Memory
Controlling bipedal gait,

Image processing,
obstacle detecting, path

planning, control, …

CPU and Memory

Control
Unit

PC, IR,
FSM

Processi
ng Unit

R0 … R7
ALU

Memory

Program

Data

I/O and Basics of Interface Design

I/O is for interfacing the physical world and the digital world.

 • Producer of data (sensors) is working much more slowly

 than consumer of that data (processor/program)

 • We need to account for asynchronous operation

 • We will use a simple consumer/producer handshake

For LC3 we just need to consider…. Input/output?

I/O Device Controller

Keyboard Interfacing:

Control/Status Register:

CPU tells the device what to do: write to control register (X)

CPU checks whether a new key is pressed: read the status register

Data Register:

CPU reads the ASCII value of the key pressed

KBD Electronics: Performs actual operation (character from keyboard)

Control / Status
Registers

Data Register

KBD
ElectronicsCPU KBD

I/O Device Controller

Display Interfacing:

Control/Status Register:

CPU tells the device what to do: write to control register (X)

CPU checks whether a last character is displayed: read the status register

Data Register:

CPU sends the ASCII value of the character to be displayed

DISP Electronics: Performs actual operation (character to the screen)

Control / Status
Registers

Data Register

DISP
ElectronicsCPU DISP

Memory-Mapped I/O

• Assign a memory address to each device register
• I/O device registers are mapped to set of addresses that are allocated to I/O device

registers rather than to actual memory locations.

• Use data movement instructions (load/store) for control and data
transfer

LC-3 Input and Output Device Registers

KBDR - store ASCII value of character entered from keyboard

KBSR - let processor know a new value is entered

DDR - store ASCII value of character to be displayed on monitor

DSR - let processor know a new value is ready to be displayed

LC3 Memory: Memory mapped device registers
Address Contents Comments

x0000 ;system space

…

x3000 ; user space

; programs

; and data

…

xFE00 ; Device registers maps

…

xFFFF

xFE00 KBSR

xFE02 KBDR

xFE04 DSR

xFE06 DDR

These are the memory addresses
to which the device registers
(KBDR, etc.) are mapped

The device registers physically are
separate circuits from the memory

Handshaking using KBDR and KBSR

• When a char is typed by user in the keyboard
• Its ASCII code is placed in KBDR[0:7]
• KBSR[15] is set to 1 (ready bit)
• Keyboard is disabled, i.e., any further keypress is ignored

• When KBDR is read by CPU
• KBSR[15] is set to 0
• Keyboard is enabled

KBSR

KBDR
15 8 7 0

1514 0

keyboard data

ready bit

This is part of the keyboard
Hardware.

LC-3 Basic Instructions to Read from the Keyboard

.ORIG x3000

;set up a loop to check ready bit in KBSR

;branch to the beginning if there is no KB input

;otherwise, load data from KBDR to R0

HALT

KBSR_ADDR .FILL xFE00

KBDR_ADDR .FILL xFE02

.END

Handshaking using DDR and DSR

• When monitor is ready to display another char
• DSR[15] is set to 1: (ready bit)

• When new char is written to DDR
• DSR[15] is set to 0

• Any other chars written to DDR are ignored

• DDR[7:0] is displayed

DSR

DDR
15 8 7 0

1514 0

output data

ready bit

This is part of the display
hardware.

Use LC3 LOAD/STORE Instructions to Display a
Character to the Monitor

.ORIG x3000

;set up a loop to check ready bit in DSR

;branch to the beginning if display is

;not ready for new data

;otherwise, store data from R0 to DDR

HALT

DSR_ADDR .FILL xFE04

DDR_ADDR .FILL xFE06

.EN

Write code for ECHO (read a char and display it)

.ORIG x3000

HALT

KBSR_ADDR .FILL xFE00

KBDR_ADDR .FILL xFE02

DSR_ADDR .FILL xFE04

DDR_ADDR .FILL xFE06

.END

What does this code do?

.ORIG x3000

KPOLL LDI R1, KBSR_ADDR

 BRzp KPOLL

 LDI R0, KBDR_ADDR

DPOLL LDI R1, DSR_ADDR

 BRzp DPOLL

 STI R0, DDR_ADDR

HALT

KBSR_ADDR .FILL xFE00

KBDR_ADDR .FILL xFE02

DSR_ADDR .FILL xFE04

DDR_ADDR .FILL xFE06

.END

Simplified Memory-Mapped Input

Simplified Memory-Mapped Output (monitor)

P&P Appendix C Describes I/O Memory Mapping

(Patt and Patel Figure C.3)

slide 33

ECE 220: Computer Systems &
Programming

© 2018 Steven S. Lumetta. All rights reserved.

Memory

control signals

are delivered

to “address

control logic.”

Example: Reading the KBSR

(Patt and Patel Figure C.3)

slide 34

ECE 220: Computer Systems &
Programming

© 2018 Steven S. Lumetta. All rights reserved.

read KBSR:

MAR=xFE00,

R.W=read

MIO.EN=1

off

Example: Writing the DDR

(Patt and Patel Figure C.3)

slide 35

ECE 220: Computer Systems &
Programming

© 2018 Steven S. Lumetta. All rights reserved.

write DDR:

MAR=xFE06,

R.W=write

MIO.EN=1

off

Exercises

• Write code for ECHO (read a char and display it)

• Write code for PUTS (display a stored string)

• Write a more sophisticated input function using command prompt.

Reading Input (first attempt)

START LDI R1, KBDRAdd ; Read from KBD

 ….

 BRnzp START

KBDRAdd .FILL xFE02 ; Address of KBDR

KBDR
15 8 7 0

1514 0

keyboard data

Does this work?

Reading Input the right way

START LDI R1, KBSR_ADDR ; Test for

 BRzp START ; character input

 LDI R0, KBDR_ADDR

 BRnzp NEXT_TASK ; Go to the next task

 ...

KBSR_ADDR .FILL xFE00 ; Address of KBSR

KBDR_ADDR .FILL xFE02 ; Address of KBDR

KBSR

KBDR
15 8 7 0

1514 0

keyboard data

ready bit

This is how TRAP x20 = GETC works!

I/O Layout

• How to connect a display
to LC3?

Display

LC-3

Writing TRAP x21

START LDI R1, DSR_ADDR ; Test for

 BRzp START ; character input

 STI R0, DDR_ADDR

 BRnzp NEXT_TASK ; Go to the next task

 ...

DSR_ADDR .FILL xFE04 ; Address of DSR

DDR_ADDR .FILL xFE06 ; Address of DDR

DSR

DDR
15 8 7 0

1514 0

output data

ready bit

This is how TRAP x21 = OUT works!

Summary of concepts

• Memory mapped I/O (extra hardware for flexibility and convenience
of programming)

• Asynchrony

• Polling

	Slide 1: University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering
	Slide 2: ECE220: Introduction to Computing
	Slide 3: ECE220 – Course Objectives
	Slide 5: Course Overview:
	Slide 6: Grading Policy
	Slide 7: Course Logistics & Tools
	Slide 9: LC3 Review – Von Neumann Model
	Slide 10: LC3 Instruction Set Architecture (ISA)
	Slide 11: Review: LD, LDI, LDR, and LEA
	Slide 12: Review:
	Slide 13
	Slide 14: Display the content of an LC3 register in HEX
	Slide 15: Outline
	Slide 16: Humanoid Robot
	Slide 17: I/O with the physical world
	Slide 18: I/O and Basics of Interface Design
	Slide 19: I/O Device Controller
	Slide 20: I/O Device Controller
	Slide 21: Memory-Mapped I/O
	Slide 22: LC3 Memory: Memory mapped device registers
	Slide 23: Handshaking using KBDR and KBSR
	Slide 24: LC-3 Basic Instructions to Read from the Keyboard
	Slide 26: Handshaking using DDR and DSR
	Slide 27: Use LC3 LOAD/STORE Instructions to Display a Character to the Monitor
	Slide 28: Write code for ECHO (read a char and display it)
	Slide 29: What does this code do?
	Slide 31: Simplified Memory-Mapped Input
	Slide 32: Simplified Memory-Mapped Output (monitor)
	Slide 33: P&P Appendix C Describes I/O Memory Mapping
	Slide 34: Example: Reading the KBSR
	Slide 35: Example: Writing the DDR
	Slide 36: Exercises
	Slide 37: Reading Input (first attempt)
	Slide 38: Reading Input the right way
	Slide 39: I/O Layout
	Slide 40: Writing TRAP x21
	Slide 41: Summary of concepts

