ECE 220

Lecture x0017 - 11/18
Trees, traversal, and BSTs intro

ECE 220 - Fall 2025 ILLINOIS

Recap

e Last week Template functions
« OOP Concepts Template classes
* (Constructors, Template library

destructors, etc.

e Containers: lists vs. vectors
e |Inheritance,

polymorphism, etc. e [terators

 Templates

ECE 220 - Fall 2025 ILLINOIS

New concept - trees

e Recall linked lists e Trees - are nonlinear &

| | | hierarchical
* Singly linked lists

. Doubly linked lists * Think family trees or

organizational charts

* Linked lists, queues, stacks:

, e Basic unit ~ node in DLL
linear data structures

e Difference - functions.

ECE 220 - Fall 2025 UNIVERSITY oF

ILLINOIS

Lesson objectives

 Understand the concept of Trees as an ADT and their use In
applications

 Be able to use structs in C to implement trees; specifically binary trees
 Understand and be able to implement different types of tree traversals
 Understand and be able to implement binary search trees

 Understand and be able to perform common operations on trees

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Why trees?

ia Ba BB B B B B Filesystems, computer graphics,
| : :
L programming languages, taxonomic
classifictaion, etc.

a=3; b=2'a+ 15; a-100/b

(ExprList }

‘ Literal 3) ‘ Add > Div
‘ Mul ' (Literal 15 } ‘ Litaral 1D0 , ‘ Var(Get b ’
(Literal 2 } ‘ VarGet a)

QuadTree: https://en.wikipedia.org/wiki/Quadtree

ECE 220 - Fall 2025 ILLINOIS

https://en.wikipedia.org/wiki/Quadtree

Concepts related to trees

e Root

 Top most node, no parent.

e | eaf

e Qutermost nodes, no children

e [nner node(s)

e Has atleast one child

UNIVERSITY QOF

ECE 220 - Fall 2025 ILLINOIS

Concepts related to trees

e Siblings

 Height (of a node)

* Length of longest path from
given node to a leaf

 Depth (of a node)

* | ength of path from root to
given node

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Binary trees

* Trees where every node has at
most two children. ‘

typedef struct node treeNode;
struct node{

int data;
treeNode *left;
treeNode *right;

(& O

ECE 220 - Fall 2025 ILLINOIS

Traversing trees

e You can traverse trees in three For each node, read the data of the
node, then visit the left subtree and
ways then the right subtree.
e Pre-order
* Root, Left, Right For each node, visit the left subtree,
then read the data of the node, then
* |n-order visit the right subtree.

e Left, Root, Right

e Post-order For each node, visit the left subtree,
then visit the right subtree, then read
o [eft, Right, Root the data of the node.

ECE 220 - Fall 2025 ILLINOIS

Traversing trees

For each node, read the data of the
node, then visit the left subtree and

then the right subtree.

e e A-B—->D—-C—-E—->G—-H-F

G e G D+B—-A—-G—-E—->H-C-F
a ° D+B-+G—-H—-2E—-F->C-A

ECE 220 - Fall 2025 ILLINOIS

Traversing trees
* The previous are called

depth-first traversals.

° e Could also do a breadth-

first traversal.

* Traverse through all the

G G G children of a node, then

visit the grandchildren.

o 0 A B GCoDoE~FoG—H

ECE 220 - Fall 2025 UNIVERSITY O

ILLINOIS

Implementing traversals

° Stack myStack

myStack.push(root)
while(myStack) {
cursor = myStack.pop()
° e cursor.print()
1f (cursor->right)
myStack.push(cursor->right)

1f (cursor->left)
myStack.push(cursor->left)

° ° What does this algorithm do?

ECE 220 - Fall 2025 ILLINOIS

Implementing traversals

° Queue myQueue

myQueue.enqueue (root)
while (myQueue) {
cursor = myQueue.dequeue()
° e cursor.print()
1f (cursor->left)
myQueue.enqueue (cursor->left)

1f (cursor->right)
myQueue.enqueue (cursor->right)

° ° What does this algorithm do?

ECE 220 - Fall 2025 ILLINOIS

typedef struct node{
int data;
struct node *left;
struct node *right;

Practice time

int main(){

* Write functions to: int arr[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
node * root = (node *) malloc(sizeof(node));
o root->data = arr[0];
Add to the left and oot sleft — NULL:
right of a node. root->right=NULL;
node * cursor = root;
o for (int j=0, 1i=1; i<1ll1l; 1i=i+2, J++){
!mplement preOrder’ add left(&cursor, arr[i]);
|n0rder, and pOStOrder add right(&cursor, arr[i+l]);
| cursor = (J]%2==0) ? cursor->right : cursor->left;
traversals. y

print preorder (root);
print inorder (root);

e Delete a tree. print_postorder (root);

delete tree(root);

UNIVERSITY OF=

ECE 220 - Fall 2025 ILLINOIS

Printing a tree

« Can we print atreein a void treeprint(node *cursor, int depth){
human readable way? (cursor == NULL)

°
4

(int 1 = 0; 1 < depth; 1i++)

printf(i == depth - 1 2 "|[=" ¢ " ");
 Focus on pre-order printf("sd\n", cursor->data);
treeprint(cursor->left, depth + 1);
traversal treeprint(cursor->right, depth + 1);
}
* Print node, then go left,
then go right

» Use depth to print right Let us check it we got

amount of indentation previous slide right ...

ECE 220 - Fall 2025 ILLINOIS

Binary Search Trees

* Binary trees that have a 6
particular sorted property
are called binary search

trees (BST) 6 °
e All nodes In the left

subtree of a given node
are lesser than or equal to

the node ‘ ° 0

* All nodes in the right
subtree of a given node

are greater than that node a ‘

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Concept check

 Who are the siblings of R?

 What is the depth of node 17

e List the leaf nodes?

 What is the height of the
tree”?

* |s this a Binary Search Tree?

UNIVERSITY OF=

ECE 220 - Fall 2025 ILLINOIS

Concept check

 Who are the siblings of R?

 What is the depth of node 17

e List the leaf nodes?

 What is the height of the
tree”?

* |s this a Binary Search Tree?

UNIVERSITY OF=

ECE 220 - Fall 2025 ILLINOIS

Exercises with BST

 How can you find the minimum or maximum element in a BST?
e How can we search a BST for a node?
 How should you insert a new node in a BST?

 How can you find the height of a general tree (can also be BST)?

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

typedef struct node({
int data;
struct node *left;
struct node *right;

~ Finding extremals in a BST

Functions work for

Minimum - keep going left - (sub)-trees, must

start at root

node * findmin(node *cursor){
(cursor->left==NULL)

Cursor;
| | 8
findmin(cursor->left);
}
Maximum - keep going right
node * findmax(node *cursor){ 5 9
(cursor->right==NULL)
Cursor;
findmax(cursor->right);
}
4 7/

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Searching in a BST

node * find elem(node *cursor, int key){ Key = 7
(cursor==NULL) // Key not found

(cursor->data == key)
// Found key

(cursor->data < key) 0 °

UNIVERSITY OF=

ECE 220 - Fall 2025 ILLINOIS

Insertion in a BST

* Insertions need to preserve the
BST property 0 °

 Add new nodes only as leaf nodes ‘ ° °

* Consider inserting 6 in the BST on

the right ... a ‘

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Insertion in a BST

node * 1nsert(node *cursor, int data){
(cursor==NULL)
newNode (data) ;

{
(data < cursor->data)

cursor->left = ‘ ° °

cursor->right =
Cursor;

}
}

UNIVERSITY OF=

ECE 220 - Fall 2025 ILLINOIS

Finding height of a tree
(2

1 1
 Height is length of longest path 0 °
from root to leaf(s)

* Recursively calculate: 1 + ‘ ° °

height of L/R subtree(s)

 Take maximum at each step G ‘

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Finding height of a tree
(2

1 1
 Height is length of longest path 0 °
from root to leaf(s) 3 1 1
* Recursively calculate: 1 + ‘ ° °
height of L/R subtree(s)

 Take maximum at each step a ‘

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Finding height of a tree
(2

1 1
 Height is length of longest path 0 °
from root to leaf(s) 3 1 1
* Recursively calculate: 1 + ‘ ° °
height of L/R subtree(s) ’

 Take maximum at each step a ‘

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Finding height of a tree
(2

1 1
 Height is length of longest path 0 °
from root to leaf(s) 3 1 1
* Recursively calculate: 1 + ‘ ° °
height of L/R subtree(s) ’

 Take maximum at each step a ‘
1

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Finding height of a tree
(2

1 1
 Height is length of longest path 0 °
from root to leaf(s) 3 1 1
* Recursively calculate: 1 + ‘ ° °
height of L/R subtree(s) >

 Take maximum at each step a ‘

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Finding height of a tree
(2

2 1
 Height is length of longest path 0 °
from root to leaf(s) 3 3
* Recursively calculate: 1 + ‘ ° °
height of L/R subtree(s) >

 Take maximum at each step a ‘

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Finding height of a tree
(2

2 1
 Height is length of longest path 0 °
from root to leaf(s) 3 3
* Recursively calculate: 1 + ‘ ° °
height of L/R subtree(s) >

 Take maximum at each step a ‘

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Finding height of a tree
(2

2 1
 Height is length of longest path 0 °
from root to leaf(s) 3 ’
* Recursively calculate: 1 + ‘ ° °
height of L/R subtree(s)

 Take maximum at each step a ‘

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Finding height of a tree
(2

2 4
 Height is length of longest path 0 °
from root to leaf(s)

* Recursively calculate: 1 + ‘ ° °

height of L/R subtree(s)

 Take maximum at each step a ‘

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Find height of a tree

int tree height(node *cursor) {
int 1lh, rh;

(cursor==NULL)

{ ORNO
lh

rh =

} ORNOERO

} What should be

height of single node? a ‘

ECE 220 - Fall 2025

template <typename T>
struct treenode({
T data;
treenode *left;
treenode *right;

Next class ...

* Using classes in C++, template <class N>
class bst{
create a templated BST orivate:
class and perform or find:
e Insertion
: public:
* Searching bst () ;
e Traversal void insert (N data);

treenode<N> *search(N data);
volid inorder();
vector<N> vectorize();

e \ectorization

* Size of tree (# of nodes) int node_count();
int height();

* Find height of the tree Vgif(?rintu;

* Deletion of tree ¥

ECE 220 - Fall 2025

