ECE 220

Lecture x0015 - 11/11
C++ - Inheritance, polymorphism

ECE 220 - Fall 2025 ILLINOIS

Recap

 We talked about * Announcements
 Cvs. C++ obvious * Quiz next week (11/17) on
differences structs in C
* Default arguments & Dynamic * Final exam details now on
allocation course website.
* Function & operator e Signup for conflicts.
overloading

« MP12 not droppable
e Structs vs. classes

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Review: LinkedList using classes

* Implement our old linked list using:

class Person{
const char *name;
unsigned 1nt byear;

These are private, if we want to be able
> to print our linked list will need to
implement a print function.

public:

Person *next;

Person(const char *name, unsigned int byear) {
this->name = name;
this->byear = byear;
this->next = NULL;

}i

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Review: LinkedList using classes

* Implement our old linked list using:

class Person{
const char *name;
unsigned int byear;

public:

Person *next;

Person(const char *name, unsigned int byear) {
this->name = name;
this->byear = byear;
this->next = NULL;

}
volid print(){
cout<< " (" << this->name << ", " << this->byear << ")" <<endl;
}
i

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Review: LinkedList using classes

« How to maintain head pointer, and add/remove functions?

e Adopt the OOP way * Basic functions to implement
for a linked list?
class LinkedList{ . . .
Person *head; * Function to print list
public: :
LinkedList (){ Function to add at head
this->head = NULL;
} * Function to remove from
head

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

New feature: references

int val = 10;
int *ptr = &val;
int &ref = wval;

* Reference is yet another addition to the C/C++ zoo.

 Key difference: A pointer is still a variable that takes up memory
whereas a reference need not (C++ standard leaves it unspecified).

e Think of it as an alias for a variable.

* |[f you remember the key difference then rest of the behavior is
logical.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Pointers vs. references

Pointer Reference

Memory address Has memory allocated for it

May not have memory allocated for it

Function Stores the memory address of variable Acts as an alias for a variable

Initialization/ Can be declared, initialized and also Initialized on declaration and cannot be
reassignment reassigned reassigned

Null value Can be assigned the NULL pointer Cannot be assigned a NULL value

Dereferencing Must use the * operator Automatically dereferenced

Arrays Can have array of pointers Cannot create array of references

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/cp4_PointerReference.html

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Examples

What will be the output?

#include <iostream>
using namespace std;

int main(){
int val = 10;
int *ptr = &val; // & to get address

int &ref = val; // & to declare reference

cout<<"val = "<<wval<<endl;

cout<<"*ptr = "<<*ptr<<endl;

cout<<"ref = "<<ref<<endl;

ref = 20; = Which variable(s) changed here?
cout<<endl<<"val = "<<val<<endl;

val = 30; = What about here?

cout<<"ref = "<<ref<<endl;

cout<<"ptr = "<<ptr<<endl; -«

ptr = &ret; Are these addresses same or different?
cout<<"ptr = "<<ptr<<endl; .

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Why references when have pointers?

 Mostly safety:

* No such thing as reference arithmetic & cannot reassign
references (can do both to pointers).

» Paradigm: Use references for most use cases and use pointers
only when you must.

 Passing around large objects to/via functions is simplified (for the
programmer) with references:

 Example later: copy constructors

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

** Advanced Usage ** : static cast<void (*)(int &, int&)>(&swap)(vall, val2);

Examples

Can fail for uninitialized, dangling, or
ill-formed pointers!

int temp = a;
a = b;
b = temp;

i,

swap (&vall,

cout<<endl<<"wvall =

cout<<"val?2

Less can go wrong with this version.

swap(vall, val2);
cout<<endl<<"wvall =

cout<<"val?2

What happens now?

void swap(int *a, int *b){ int main(){
int temp = *a; int vall, val2;
*a = *b; vall = 10, val2 = 20;
*b = temp;
} cout<<"vall = "<<vall<<endl;
cout<<"val2 = "<<val2<<endl;
void swap(int &a, int &b){

Which function is called?
"<<vall<<endl;
= "<<val2<<endl;

&val2) ;

Which function is called?
"<<vall<<endl;
= "<<val2<<endl;

Overload resolution fails!

Solution: Explicit casts

UNIVERSITY OF

ECE 220 - Fall 2025

ILLINOIS

Copy constructor

* Recall that we could implement a Stack ADT with a linked list
 Push: add at head of linked list.
 Pop: remove from head + give popped value to caller.

* How can we do the second part?

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Copy constructor

class Person{ Second constructor - .
const char *name; _useful to copy an ’ ExerCIs_e. Can We_
unsigned int byear; instance of Person. appropriately modify the
Sublic: LinkedList class definition
Person *next; and create a derived Stack

Person(const char /*name, unsigned int byear);
Person(const Person &p);

class from it?

}i

Person: :Person(const Person &p){ » Stack should only expose the
this->name = p.name; :
this->byear = p.byear: push and pop functions.
this->next = NULL;

}

Called pass by
constant reference.

ECE 220 - Fall 2025 ILLINOIS

Thoughts - Stack with LinkedLists

e How to modify the LinkedList class?
 Does add at head and del at head need to be public?
* Can they be private?

 When popping, we need access to head pointer to call copy
constructor - can it still be private?

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

What about a class
Hamster which

Inherltance squeaks?

class Dog{ class Cat{
const char *name; const char *name;
int breed; int breed;
int age; int age;

bool nail clip;

public: public:
Dog(const char *n, int b, int a){ Cat(const char *n, int b, int a){
name = n, breed = b; age = a; name = n, breed = b, age = a;
} }
void greet(const char *p){ void greet(const char *p){
cout<<name<<": Hi, "<<p<<endl; cout<<name<<": Hi, "<<p<<endl;
} }
void sleep(){ void sleep(){
cout<<name<<": Zzzzzz"<<endl; cout<<name<<": Zzzzzz"<<endl;
} }
void speak(){ void speak(){
cout<<name<<": Woof!'"<<endl; cout<<name<<": Meow! "<<endl;

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Inheritance

C++ allows us to define a class based on an existing class, and the new class
will inherit members of the existing class.

* The existing class - Base class

e The new class - Derived class

Exceptions in inheritance (things not inherited):
e Constructors, destructors of the base class
* Overloaded operators of the base class

 Friend functions of the base class

ECE 220 - Fall 2025 ILLINOIS

Inheritance

Base class

class Animal/{
const char *name;
int breed;
int age;

public:
Animal (const char *n, int b, int a){
name = n;
breed = b;
age = a;

}

volid greet(const char *p){
cout<<name<<": Hi, "<<p<<endl;

}

void sleep(){
cout<<name<<":

}

Z2zzzzz"<<endl;

const char* get name() {
return name;

}
}i

ECE 220 - Fall 2025

Inheritance mode

Derived class

T T

Base class

class ﬁog: public Animél{
bool nail clip;

public:
void speak(){
cout<<get name()<<":

}
}i

Woof! "<<endl;

class Cat: public Animal/{
public:

volid speak(){
cout<<get name()<<":

Meow! "<<endl;

1]

SSe|o paAla(Qg

SSe|o paAla(Q

UNIVERSITY OF

ILLINOIS

Inheritance rules

Derived class has access to

Inheritance private members public members

Private No (inherited as private
. . No .
inheritance variables)

Public Yes (inherited as public
. . No .
inheritance variables)

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Inheritance rules

Derived class has access to

Inheritance public members protected members

Private No (inherited as private Yes (inherited as private
. . No . .
inheritance variables) variables)
| Pu.bllc NG Yes (mherl.ted as public Ves
inheritance variables)
Protected Yes (inherited as protected
. . No . Yes
inheritance variables)

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Derived class constructor?

class Dog: public Animal({
bool nail clip;

public:
Dog(const char *n, int b, int a, bool c¢){
nail clip = c;

} | .

void speak(){ " " g HOW W|” Dog and Cat

} cout<<get name()<<": Woof! "<<endl; Set the|r breed, name
& and age which are part
abiic. | pubiie Animald of the Animal class

Cat(const char *n, int b, int a){ and ItS p”Vate
' members?

void speak(){
cout<<get name()<<": Meow! "<<endl;

}
}i

ECE 220 - Fall 2025 ILLINOIS

Derived class constructor?

class Dog: public Animal({
bool nail clip;

public:
Dog(const char *n, int b, int a, bool c¢)| : Animal(n, b, a){

nail clip = c;
} \

volid speak(){
cout<<get name()<<": Woof! "<<endl;

Will make sure to call

- the base class
o constructor first.
class Cat: public Animal{
public:
Cat(const char*n, int b, int a)| : Animal(n, b, a){ It is called member

i
initializer list syntax!
void speak(){
cout<<get name()<<": Meow! "<<endl;

}
}i

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Virtual functions

#include <iostream> int main(){
using namespace std; Animal *anim = new Animal();
Cat *bruno = new Cat();
class Animal/{ anim->eat();
public: bruno->eat();
volid eat(){
cout << "I'm eating generic food." << endl; eat lunch(anim);
} eat lunch(bruno);
i }
class Cat : public Animal({ :)
ublic: Why didn’t Bruno eat a
void eat(){ mouse for lunch ?
cout << "I'm eating a mouse." << endl;
}
}i Need a way for the derived class to override the base class
function,
volid eat lunch(Animal *a){
a->eat(); .. Or....

}

We will have to overload eat 1lunch for each new species!

ECE 220 - Fall 2025 ILLINOIS

Virtual functions

#include <iostream>
using namespace std;

A virtual function is a

;llgjjcfmimal{ member function in the
virtual void eat(){ <+ " base class that we expect
} cout << "I'm eating generic food." << endl; to redefine in derived

b; classes

class Cat : public Animal{

public: O e What if your colleagues

cout << "I'm eating a mouse.” << endl; forget to override a virtual
" function? How to ensure
it?

volid eat lunch(Animal *a){
a->eat();

}

ECE 220 - Fall 2025 ILLINOIS

Pure virtual functions

Pure virtual functions are used ...

class Animal{
public:

» if a function doesn't have any }."irt“al void eat()=0;
use in the base class '

class Cat : public Animal({
public:

* ... but the function must be void eat ()1
implemented by all its derived } cout << "I'm eating a mouse.’ << endl;
classes! .
A pure virtual function doesn't have a Adding a pure virtual
function body and it ends with “=0" function turns a normal

class to an abstract class!

ECE 220 - Fall 2025 ILLINOIS

Abstract class

 Abstract class is a class that contains one or more pure virtual
functions.

 No objects of that abstract class can be created

* A pure virtual function that is not implemented in a derived class
remains a pure virtual function, so the derived class is also an

abstract class

 An abstract class is intended as an interface to objects accessed
through pointers and references (e.g. eat lunch function)

UNIVERSITY OF

ILLINOIS

ECE 220 - Fall 2025

Next time ...

* Write once, use many times
 Templates

 STL (Standard Template Library)

e Standard containers, vectors, iterators, etc.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

