
 ECE 220 - Fall 2025 Dr. Ivan Abraham

ECE 220
Lecture x0015 - 11/11

C++ - Inheritance, polymorphism

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap
• We talked about

• C vs. C++ obvious
differences

• Default arguments & Dynamic
allocation

• Function & operator
overloading

• Structs vs. classes

• Announcements

• Quiz next week (11/17) on
structs in C

• Final exam details now on
course website.

• Signup for conflicts.

• MP12 not droppable

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Review: LinkedList using classes
• Implement our old linked list using:

3

class Person{
 const char *name;
 unsigned int byear;

public:

 Person *next;
 Person(const char *name, unsigned int byear){
 this->name = name;
 this->byear = byear;
 this->next = NULL;
 }
};

These are private, if we want to be able
to print our linked list will need to

implement a print function.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

• Implement our old linked list using:

4

class Person{
 const char *name;
 unsigned int byear;

public:

 Person *next;
 Person(const char *name, unsigned int byear){
 this->name = name;
 this->byear = byear;
 this->next = NULL;
 }

 void print(){
 cout<< "(" << this->name << ", " << this->byear << ")" <<endl;
 }
};

Review: LinkedList using classes

 ECE 220 - Fall 2025 Dr. Ivan Abraham 5

• How to maintain head pointer, and add/remove functions?

• Adopt the OOP way

class LinkedList{
Person *head;

public:
 LinkedList(){
 this->head = NULL;
 }
 void print_list();
 void add_at_head(Person &p);
 void del_at_head();
 ~LinkedList();
};

• Basic functions to implement
for a linked list?

• Function to print list

• Function to add at head

• Function to remove from
head

Review: LinkedList using classes

 ECE 220 - Fall 2025 Dr. Ivan Abraham

New feature: references

• Reference is yet another addition to the C/C++ zoo.

• Key difference: A pointer is still a variable that takes up memory
whereas a reference need not (C++ standard leaves it unspecified).

• Think of it as an alias for a variable.

• If you remember the key difference then rest of the behavior is
logical.

6

 int val = 10; // normal variable
 int *ptr = &val; // & to get address, * to indicate pointer
 int &ref = val; // & to declare reference to val

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Pointers vs. references

7

Pointer Reference

Memory address Has memory allocated for it May not have memory allocated for it

Function Stores the memory address of variable Acts as an alias for a variable

Initialization/
reassignment

Can be declared, initialized and also
reassigned

Initialized on declaration and cannot be
reassigned

Null value Can be assigned the NULL pointer Cannot be assigned a NULL value

Dereferencing Must use the * operator Automatically dereferenced

Arrays Can have array of pointers Cannot create array of references

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/cp4_PointerReference.html

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Examples

8

#include <iostream>
using namespace std;

int main(){
 int val = 10;
 int *ptr = &val; // & to get address
 int &ref = val; // & to declare reference

 cout<<"val = "<<val<<endl;
 cout<<"*ptr = "<<*ptr<<endl;
 cout<<"ref = "<<ref<<endl;

 ref = 20;
 cout<<endl<<"val = "<<val<<endl;

 val = 30;
 cout<<"ref = "<<ref<<endl;

 cout<<"ptr = "<<ptr<<endl;
 ptr = &ref;
 cout<<"ptr = "<<ptr<<endl;
}

What will be the output?

Which variable(s) changed here?

What about here?

Are these addresses same or different?

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Why references when have pointers?

• Mostly safety:

• No such thing as reference arithmetic & cannot reassign
references (can do both to pointers).

• Paradigm: Use references for most use cases and use pointers
only when you must.

• Passing around large objects to/via functions is simplified (for the
programmer) with references:

• Example later: copy constructors

9

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Examples

10

void swap(int *a, int *b){
 int temp = *a;
 *a = *b;
 *b = temp;
}

void swap(int &a, int &b){
 int temp = a;
 a = b;
 b = temp;
}

void swap(int a, int b){
 int temp = a;
 a = b;
 b = temp;
}

int main(){
 int val1, val2;
 val1 = 10, val2 = 20;

 cout<<"val1 = "<<val1<<endl;
 cout<<"val2 = "<<val2<<endl;

 swap(&val1, &val2);
 cout<<endl<<"val1 = "<<val1<<endl;
 cout<<"val2 = "<<val2<<endl;

 swap(val1, val2);
 cout<<endl<<"val1 = "<<val1<<endl;
 cout<<"val2 = "<<val2<<endl;
}

Which function is called?

Which function is called?

What happens now?

Can fail for uninitialized, dangling, or
ill-formed pointers!

Less can go wrong with this version.

Overload resolution fails!

💀 Advanced Usage 💀 : static_cast<void (*)(int &, int&)>(&swap)(val1, val2);

Solution: Explicit casts

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Copy constructor

• Recall that we could implement a Stack ADT with a linked list

• Push: add at head of linked list.

• Pop: remove from head + give popped value to caller.

• How can we do the second part?

11

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Copy constructor

12

class Person{
 const char *name;
 unsigned int byear;

public:
 Person *next;
 Person(const char *name, unsigned int byear);
 Person(const Person &p);
};

Person::Person(const Person &p){
 this->name = p.name;
 this->byear = p.byear;
 this->next = NULL;
}

Called pass by
constant reference.

• Exercise: Can we
appropriately modify the
LinkedList class definition
and create a derived Stack
class from it?

• Stack should only expose the
push and pop functions.

Second constructor
useful to copy an

instance of Person.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Thoughts - Stack with LinkedLists

• How to modify the LinkedList class?

• Does add_at_head and del_at_head need to be public?

• Can they be private?

• When popping, we need access to head pointer to call copy
constructor - can it still be private?

13

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Inheritance

14

class Dog{
 const char *name;
 int breed;
 int age;
 bool nail_clip;

public:
 Dog(const char *n, int b, int a){
 name = n, breed = b; age = a;
 }

 void greet(const char *p){
 cout<<name<<": Hi, "<<p<<endl;
 }

 void sleep(){
 cout<<name<<": Zzzzzz"<<endl;
 }

 void speak(){
 cout<<name<<": Woof!"<<endl;
 }
};

class Cat{
 const char *name;
 int breed;
 int age;

public:
 Cat(const char *n, int b, int a){
 name = n, breed = b, age = a;
 }

 void greet(const char *p){
 cout<<name<<": Hi, "<<p<<endl;
 }

 void sleep(){
 cout<<name<<": Zzzzzz"<<endl;
 }

 void speak(){
 cout<<name<<": Meow!"<<endl;
 }
};

What about a class
Hamster which

squeaks?

 ECE 220 - Fall 2025 Dr. Ivan Abraham

C++ allows us to define a class based on an existing class, and the new class
will inherit members of the existing class.

• The existing class - Base class

• The new class - Derived class

Exceptions in inheritance (things not inherited):

• Constructors, destructors of the base class

• Overloaded operators of the base class

• Friend functions of the base class

15

Inheritance

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Inheritance

16

class Animal{
 const char *name;
 int breed;
 int age;

public:
 Animal(const char *n, int b, int a){
 name = n;
 breed = b;
 age = a;
 }

 void greet(const char *p){
 cout<<name<<": Hi, "<<p<<endl;
 }

 void sleep(){
 cout<<name<<": Zzzzzz"<<endl;
 }

 const char* get_name(){
 return name;
 }
};

class Dog: public Animal{
 bool nail_clip;

public:
 void speak(){
 cout<<get_name()<<": Woof!"<<endl;
 }
};

class Cat: public Animal{
public:

 void speak(){
 cout<<get_name()<<": Meow!"<<endl;
 }
};

Base class

D
erived class

D
erived class

Derived class Base class

Inheritance mode

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Inheritance rules

17

Derived class has access to ….

Inheritance private members public members protected members

Private
inheritance No No (inherited as private

variables)
Yes (inherited as private

variables)

Public
inheritance No Yes (inherited as public

variables) Yes

Protected
inheritance No Yes (inherited as protected

variables) Yes

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Inheritance rules

18

Derived class has access to ….

Inheritance private members public members protected members

Private
inheritance No No (inherited as private

variables)
Yes (inherited as private

variables)

Public
inheritance No Yes (inherited as public

variables) Yes

Protected
inheritance No Yes (inherited as protected

variables) Yes

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Derived class constructor?

19

class Dog: public Animal{
 bool nail_clip;

public:
 Dog(const char *n, int b, int a, bool c){
 nail_clip = c;
 }
 void speak(){
 cout<<get_name()<<": Woof!"<<endl;
 }
};

class Cat: public Animal{
public:

 Cat(const char *n, int b, int a){
 };

 void speak(){
 cout<<get_name()<<": Meow!"<<endl;
 }
};

How will Dog and Cat
set their breed, name

and age which are part
of the Animal class

and its private
members?

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Derived class constructor?

20

class Dog: public Animal{
 bool nail_clip;

public:
 Dog(const char *n, int b, int a, bool c) : Animal(n, b, a){
 nail_clip = c;
 }
 void speak(){
 cout<<get_name()<<": Woof!"<<endl;
 }
};

class Cat: public Animal{
public:

 Cat(const char*n, int b, int a) : Animal(n, b, a){
 };

 void speak(){
 cout<<get_name()<<": Meow!"<<endl;
 }
};

Will make sure to call
the base class
constructor first.

It is called member
initializer list syntax!

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Virtual functions

21

#include <iostream>
using namespace std;

class Animal{
public:
 void eat(){
 cout << "I'm eating generic food." << endl;
 }
};

class Cat : public Animal{
public:
 void eat(){
 cout << "I'm eating a mouse." << endl;
 }
};

void eat_lunch(Animal *a){
 a->eat();
}

int main(){
 Animal *anim = new Animal();
 Cat *bruno = new Cat();
 anim->eat();
 bruno->eat();

 eat_lunch(anim);
 eat_lunch(bruno);
}

Why didn’t Bruno eat a
mouse for lunch ?

Need a way for the derived class to override the base class
function,

… or ….

We will have to overload eat_lunch for each new species!

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Virtual functions

22

• A virtual function is a
member function in the
base class that we expect
to redefine in derived
classes

• What if your colleagues
forget to override a virtual
function? How to ensure
it?

#include <iostream>
using namespace std;

class Animal{
public:
 virtual void eat(){
 cout << "I'm eating generic food." << endl;
 }
};

class Cat : public Animal{
public:
 void eat(){
 cout << "I'm eating a mouse." << endl;
 }
};

void eat_lunch(Animal *a){
 a->eat();
}

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Pure virtual functions
Pure virtual functions are used …

• if a function doesn't have any
use in the base class

• … but the function must be
implemented by all its derived
classes!

A pure virtual function doesn't have a
function body and it ends with “=0”

23

class Animal{
public:
 virtual void eat()=0;
};

class Cat : public Animal{
public:
 void eat(){
 cout << "I'm eating a mouse." << endl;
 }
};

Adding a pure virtual
function turns a normal

class to an abstract class!

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Abstract class
• Abstract class is a class that contains one or more pure virtual

functions.

• No objects of that abstract class can be created

• A pure virtual function that is not implemented in a derived class
remains a pure virtual function, so the derived class is also an
abstract class

• An abstract class is intended as an interface to objects accessed
through pointers and references (e.g. eat_lunch function)

24

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Next time …

• Write once, use many times

• Templates

• STL (Standard Template Library)

• Standard containers, vectors, iterators, etc.

25

