ECE 220

Lecture x0011 - 10/23
Linked Lists - Introduction

ECE 220 - Fall 2025 ILLINOIS

Recap

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Recap

e | asttime we discussed:

ECE 220 - Fall 2025 ILLINOIS

Recap

e | asttime we discussed:

* Automatic vs. dynamic
memory allocation

ECE 220 - Fall 2025 ILLINOIS

Recap

e | asttime we discussed:

* Automatic vs. dynamic
memory allocation

e malloc family of functions

ECE 220 - Fall 2025 ILLINOIS

Recap

e | asttime we discussed:

* Automatic vs. dynamic
memory allocation

e malloc family of functions

e calloc

ECE 220 - Fall 2025 ILLINOIS

Recap

e | asttime we discussed:

* Automatic vs. dynamic
memory allocation

e malloc family of functions
e calloc

e realloc

ECE 220 - Fall 2025 ILLINOIS

Recap

e | ast time we discussed: .
e Calling free to release

» Automatic vs. dynamic memory

memory allocation
e malloc family of functions
e calloc

e realloc

ECE 220 - Fall 2025 ILLINOIS

Recap

e | ast time we discussed: .
e Calling free to release

» Automatic vs. dynamic memory

memory allocation * Allocating 2D arrays
e malloc family of functions

e calloc

e realloc

ECE 220 - Fall 2025 [ILLINOIS

Recap

e | ast time we discussed: .
e Calling free to release

» Automatic vs. dynamic memory

memory allocation * Allocating 2D arrays

e malloc family of functions . Memory leak vs. seg-faults

e calloc

e realloc

ECE 220 - Fall 2025 [ILLINOIS

Recap

e | ast time we discussed: .
e Calling free to release

» Automatic vs. dynamic memory

memory allocation * Allocating 2D arrays

e malloc family of functions . Memory leak vs. seg-faults

e calloc * valgrind to detect

memory leaks.
e realloc y

ECE 220 - Fall 2025 [ILLINOIS

Lesson objectives

ECE 220 - Fall 2025

Lesson objectives

 Define and describe the structure and components of a linked list, including nodes,
head, and tail pointers.

ECE 220 - Fall 2025 ILLINOIS

Lesson objectives

 Define and describe the structure and components of a linked list, including nodes,
head, and tail pointers.

 Compare and contrast arrays and linked lists with respect to memory allocation,
data access, and efficiency of insertion and deletion operations.

ILLINOIS

ECE 220 - Fall 2025

Lesson objectives

 Define and describe the structure and components of a linked list, including nodes,
head, and tail pointers.

 Compare and contrast arrays and linked lists with respect to memory allocation,
data access, and efficiency of insertion and deletion operations.

* Implement and test fundamental linked list operations in C, including inserting,
traversing, and deleting nodes.

ECE 220 - Fall 2025 ILLINOIS

Lesson objectives

 Define and describe the structure and components of a linked list, including nodes,
head, and tail pointers.

 Compare and contrast arrays and linked lists with respect to memory allocation,
data access, and efficiency of insertion and deletion operations.

* Implement and test fundamental linked list operations in C, including inserting,
traversing, and deleting nodes.

* Apply dynamic memory allocation to create and modify linked list structures safely.

ECE 220 - Fall 2025 ILLINOIS

Lesson objectives

 Define and describe the structure and components of a linked list, including nodes,
head, and tail pointers.

 Compare and contrast arrays and linked lists with respect to memory allocation,
data access, and efficiency of insertion and deletion operations.

* Implement and test fundamental linked list operations in C, including inserting,
traversing, and deleting nodes.

* Apply dynamic memory allocation to create and modify linked list structures safely.

* Evaluate and troubleshoot edge cases in linked list programs, such as handling
empty or singleton lists.

ECE 220 - Fall 2025 ILLINOIS

Today - linked list

ECE 220 - Fall 2025

Today - linked list

« Whatis alist ... really?

ECE 220 - Fall 2025

Today - linked list

« Whatis alist ... really?

e Alist is collection of elements/items which can be accessed
sequentially.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Today - linked list

« Whatis alist ... really?

e Alist is collection of elements/items which can be accessed
sequentially.

* Entertains the concept of order; first, second, last.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Today - linked list

« Whatis alist ... really?

e Alist is collection of elements/items which can be accessed
sequentially.

* Entertains the concept of order; first, second, last.

* Note: An empty list is still a list.

ECE 220 - Fa" 2025 UNIVERSITY OF

ILLINOIS

Today - linked list

« Whatis alist ... really?

e Alist is collection of elements/items which can be accessed
sequentially.

* Entertains the concept of order; first, second, last.

* Note: An empty list is still a list.

 An array is an indexed list; i.e. can access elements by their index.

ECE 220 - Fa" 2025 UNIVERSITY OF

ILLINOIS

Linked list

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Linked list

* A linked list is an ordered collection of items (often
called nodes), each of which contains some data,
connected using pointers (hence the link part).

UNIVERSITY OF=

ECE 220 - Fall 2025 ILLINOIS

Linked list

* A linked list is an ordered collection of items (often
called nodes), each of which contains some data,
connected using pointers (hence the link part).

A node is a collection of two sub-elements or parts.

ECE 220 - Fall 2025 T

ILLINOIS

Linked list

* A linked list is an ordered collection of items (often
called nodes), each of which contains some data,
connected using pointers (hence the link part).

A node is a collection of two sub-elements or parts.

ECE 220 - Fall 2025 T

ILLINOIS

Linked list

* A linked list is an ordered collection of items (often
called nodes), each of which contains some data,
connected using pointers (hence the link part). Data

A node is a collection of two sub-elements or parts.

* A data part that stores the actual element

ECE 220 - Fall 2025 T

ILLINOIS

Linked list

* A linked list is an ordered collection of items (often
called nodes), each of which contains some data,

connected using pointers (hence the link part). Data Next

pointer
* A node is a collection of two sub-elements or parts. “ ’—Ly

* A data part that stores the actual element

 And a next part (pointer) that stores the
address of the next node.

ECE 220 - Fall 2025 T

ILLINOIS

Linked list

* A linked list is an ordered collection of items (often
called nodes), each of which contains some data,

connected using pointers (hence the link part). Data Next

pointer
* A node is a collection of two sub-elements or parts. “ ’—Ly

* A data part that stores the actual element

Node

 And a next part (pointer) that stores the
address of the next node.

ECE 220 - Fall 2025 T

ILLINOIS

Linked list

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Linked list

head

o

e The first node in the list is called the head

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Linked list

headptr
head

e The first node in the list is called the head

* Accessed using a pointer called head pointer

ECE 220 - Fall 2025

Linked list

headptr
head

* The first node in the list is called the head
* Accessed using a pointer called head pointer

 Used as the starting reference to traverse the list

ECE 220 - Fall 2025

Linked list

headptr
head tail
BN or— BN o N ol

e The first node in the list is called the head

* Accessed using a pointer called head pointer
 Used as the starting reference to traverse the list

* The last node In the list Is called the tail.

ECE 220 - Fall 2025

Linked list

headptr
head

* The first node in the list is called the head NULL
* Accessed using a pointer called head pointer
 Used as the starting reference to traverse the list

* The last node in the list is called the tail.

* The tail may contain data, but it always points to NULL value

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Array vs. linked list

ECE 220 - Fall 2025

Array vs. linked list

Array
(can be automatic or dynamic)

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Array vs. linked list

Array
(can be automatic or dynamic)

ECE 220 - Fall 2025 ILLINOIS

Array vs. linked list

Memory

0

1

2

3

4 Memory allocated
grid [5] for array grid

=

14

8

9

Array
(can be automatic or dynamic)

ECE 220 - Fall 2025 ILLINOIS

Array vs. linked list

Memory

0

1

2

3

4 Memory allocated
grid [5] for array grid

=

14

8

9

Array Linked list
(can be automatic or dynamic) (dynamic only)

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Array vs. linked list

Memory A linked list in memory

=== === = -

grid [0 o Node 3

grid [1 | Y

grid |2 NULL
rid [3 | -

J | _ _ Node 2 \\

grid [4 Memory allocated

grid [5] for array grid

grid 6] Headspointer

grid [7 "1 Nodeo B

grid [8 \' |
. -~ - ‘_’/ ’

.g_rlfi .'9.' - = = Node 1 ,/

Array Llnked list
(can be automatic or dynamic) (dynamic only)

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Array vs. linked list

ECE 220 - Fall 2025 1L ILLINOIS

Array vs. linked list

Memory Allocation Automatic / Dynamic Dynamic

ECE 220 - Fall 2025 1L ILLINOIS

Array vs. linked list

Memory Allocation Automatic / Dynamic Dynamic

Memory Structure Contiguous Not necessarily consecutive

ECE 220 - Fall 2025

Array vs. linked list

Element O

Element 1

Element 2

Memory Allocation Automatic / Dynamic Dynamic
Memory Structure Contiguous Not necessarily consecutive

INIVERSITY B

ECE 220 - Fall 2025 ILLINOIS

Array vs. linked list

Element O

Element 1

headptr
head tail
Element 2 @m\

NULL

Memory Allocation Automatic / Dynamic Dynamic

Memory Structure Contiguous Not necessarily consecutive

INIVERSITY B

ECE 220 - Fall 2025 ILLINOIS

Array vs. linked list

Element O

Element 1

headptr
head tail
Element 2 @m\

NULL

Memory Allocation Automatic / Dynamic Dynamic
Memory Structure Contiguous Not necessarily consecutive
Order of Access Random Sequential

INIVERSITY B

ECE 220 - Fall 2025 ILLINOIS

Array vs. linked list

Element O

Element 1

Element 2

Memory Allocation

Memory Structure

Order of Access

Insertion / Deletion

tail

1%3—»:&-»@“3\

Automatic / Dynamic

Contiguous

Random

Create/delete space, then shift
all successive elements

Dynamic

Not necessarily consecutive

Sequential

Change pointer address

NULL

UNIVERSITY OF

ECE 220 - Fall 2025

ILLINOIS

Basic operations

ECE 220 - Fall 2025

Basic operations

* Inserting an item in the list

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Basic operations

* Inserting an item in the list

e Unsorted list: Can insert at head or at tail

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Basic operations

* Inserting an item in the list

e Unsorted list: Can insert at head or at tail

 Sorted list: Insert so as to maintain sorted property

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Basic operations

* Inserting an item in the list

e Unsorted list: Can insert at head or at tail

 Sorted list: Insert so as to maintain sorted property

* Traversing the list

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Basic operations

* Inserting an item in the list

e Unsorted list: Can insert at head or at tail

 Sorted list: Insert so as to maintain sorted property

* Traversing the list

* Deleting an item from the list

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Basic operations

* Inserting an item in the list

e Unsorted list: Can insert at head or at tail

 Sorted list: Insert so as to maintain sorted property

* Traversing the list

* Deleting an item from the list

* Delete from head, tail or by key.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Declaring a linked list

Example: Student record

ECE 220 - Fall 2025

Declaring a linked list

Example: Student record

typedef struct StudentStruct/{
int UIN;
char *netid;
float GPA;

}student;

Using structs

ECE 220 - Fall 2025 ILLINOIS

Declaring a linked list

Example: Student record

typedef struct StudentStruct{ typedef struct StudentStruct{

int UIN; o .
char *netid; glzzt gi;f !
N glo:t GPA; struct StudentStruct *next;
}student; 1node
Using structs Using linked lists

ECE 220 - Fall 2025 ILLINOIS

Declaring a linked list

Example: A person

typedef struct person{
char *name;
unsigned 1int byear;
struct person *next;
}node;

typedef struct person{

char *name;

unsigned int birthyear;
}Person;

Using structs Using linked lists

ECE 220 - Fall 2025 ILLINOIS

typedef struct person{
char *name;
unsigned int byear;
struct person *next;
}node;

Declaring a linked list

ECE 220 - Fall 2025 [ILLINOIS

e What should be the
empty list?

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

typedef struct person{
char *name;
unsigned int byear;
struct person *next;
}node;

Declaring a linked list

e What should be the
empty list?

headptr

NULL

ECE 220 - Fall 2025 ILLINOIS

typedef struct person{
char *name;
unsigned int byear;
struct person *next;
}node;

Declaring a linked list

 What should be the
typedef struct person{

empty IiSt? char *name;

unsigned int byear;
headptr struct person *next;
tnode;

NULL

node* headptr NULL;

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Declaring a linked list

e \What should be the

empty list? typedef struct person{

char *name;
unsigned int byear;

headptr struct person *next;
tnode;
NULL

node* headptr;

 \What should be the
singleton list?

ECE 220 - Fall 2025 ILLINOIS

Declaring a linked list

e \What should be the

empty list? typedef struct person{

char *name;
unsigned int byear;

headptr struct person *next;
tnode;
NULL

node* headptr;

 \What should be the
singleton list?

\ ST o] = e

ECE 220 - Fall 2025 ILLINOIS

Declaring a linked list

e \What should be the

typedef struct person{

empty “St? char *name;
unsigned 1int byear;
headptr struct person *next;
tnode;
NULL
node* headptr;
e \What should be the node¥* temp='('nodef) malloc(sizeof (node));
_ _ temp->name="Alex
singleton list? temp->byear-1988:
temp->next=NULL;
headptr = temp;

\Mm%\ —1p NULL

ECE 220 - Fall 2025 ILLINOIS

Linked lists - more elements

* Inserting an item in the list
» Unsorted list: Can insert at head or at
tail
e Sorted list: Insert so as to maintain
sorted property
» Traversing the list
e Deleting an item from the list
» Delete from head, tail or middle.

ECE 220 - Fall 2025 [ILLINOIS

URLANA-C-AMMFAL

Linked lists - more elements

 Suppose we want to add another node

* Inserting an item in the list
» Unsorted list: Can insert at head or at
tail
e Sorted list: Insert so as to maintain
sorted property
» Traversing the list
e Deleting an item from the list
» Delete from head, tail or middle.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Linked lists - more elements

 Suppose we want to add another node

{“John”, 1986, } TN 0s6]]

* Inserting an item in the list
» Unsorted list: Can insert at head or at
tail
e Sorted list: Insert so as to maintain
sorted property
» Traversing the list
e Deleting an item from the list
» Delete from head, tail or middle.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Linked lists - more elements

 Suppose we want to add another node

{“John”, 1986, } TN 0s6]]

e Should the node be added at the head or tail?

* Inserting an item in the list
» Unsorted list: Can insert at head or at
tail
e Sorted list: Insert so as to maintain
sorted property
» Traversing the list
e Deleting an item from the list
» Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Linked lists - more elements

 Suppose we want to add another node

{“John”, 1986, } TN 0s6]]

e Should the node be added at the head or tail?

* For sorted linked lists, this node should go at the head

* Inserting an item in the list

e Unsorted list: Can insert at head or at
tail

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Linked lists - more elements

 Suppose we want to add another node

{“John”, 1986, } TN 0s6]]

e Should the node be added at the head or tail?

* For sorted linked lists, this node should go at the head

* For plain linked lists, we get to choose. + Inserting an item in the list

e Unsorted list: Can insert at head or at
tail

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Linked lists - adding a node

BN o

N 08| |

* Inserting an item in the list
e Unsorted list: Can insert at head or at
tail
« Sorted list: Insert so as to maintain
sorted property
« Traversing the list
» Deleting an item from the list
* Delete from head, tail or middle.

ECE 220 - Fall 2025 [ILLINOIS

Linked lists - adding a node

 Suppose we want to add at
head.

BN o =

N 08| |

* Inserting an item in the list
e Unsorted list: Can insert at head or at
tail
« Sorted list: Insert so as to maintain
sorted property
« Traversing the list
» Deleting an item from the list
* Delete from head, tail or middle.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Linked lists - adding a node

 Suppose we want to add at
head.

e \What needs to be done?

BN o =
N 08| |

* Inserting an item in the list
e Unsorted list: Can insert at head or at
tail
« Sorted list: Insert so as to maintain
sorted property
« Traversing the list
» Deleting an item from the list
* Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Linked lists - adding a node

 Suppose we want to add at
head.

e \What needs to be done?

BN o =
I 1986]

 New node should point to
current head.

* Inserting an item in the list
e Unsorted list: Can insert at head or at
tail
« Sorted list: Insert so as to maintain
sorted property
« Traversing the list
» Deleting an item from the list
* Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Linked lists - adding a node

 Suppose we want to add at
head.

e \What needs to be done?

BN o =
I 1986]

 New node should point to
current head.

* Inserting an item in the list
e Unsorted list: Can insert at head or at
tail
« Sorted list: Insert so as to maintain
sorted property
« Traversing the list
» Deleting an item from the list
* Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Linked lists - adding a node

 Suppose we want to add at
head.

e \What needs to be done?

BN T
 New node should point to
current head. 1986

* Inserting an item in the list
e Unsorted list: Can insert at head or at
tail
« Sorted list: Insert so as to maintain
sorted property
« Traversing the list
» Deleting an item from the list
* Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Linked lists - adding a node

 Suppose we want to add at
head.

 \What needs to be done?

 New node should point to
current head.

 Current head should be
updated to new node.

A 1983] —»nNuLL

1986 | ‘ |

* Inserting an item in the list
e Unsorted list: Can insert at head or at
tail
« Sorted list: Insert so as to maintain
sorted property
« Traversing the list
» Deleting an item from the list
* Delete from head, tail or middle.

ECE 220 - Fall 2025

ILLINOIS

Linked lists - adding a node

node* temp=(node*) malloc(sizeof(node));

 New node should point to
current head.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Linked lists - adding a node

node* temp=(node*) malloc(sizeof(node));

In our code, cursor will
stand for the node currently

: being examined; in this
* New node should pomt to example the head pointer

current head. /
temp->next = cursor;

ECE 220 - Fall 2025 ILLINOIS

Linked lists - adding a node

node* temp=(node*) malloc(sizeof(node));

In our code, cursor will
stand for the node currently

: being examined; in this
* New node should pomt to example the head pointer

current head. /
\\\\\\\\\\\\\\\\ﬂtemp—>next = Ccursor;

ECE 220 - Fall 2025 ILLINOIS

Linked lists - adding a node

node* temp=(node*) malloc(sizeof(node));

In our code, cursor will
stand for the node currently

: being examined; in this
* New node should pomt to example the head pointer

current head. /
\\\\\\\\\\\\\\\\ﬂtemp—>next = Ccursor;

cursor = temp;

}

ECE 220 - Fall 2025 ILLINOIS

Linked lists - adding a node

node* temp=(node*) malloc(sizeof(node));

In our code, cursor will
stand for the node currently
being examined; in this
example the head pointer

\\\\\\\\\\\\\\\\ﬂtemp—>next = Cursor;

e Current head should be cursor = temp;
updated to new node. ///}/

ECE 220 - Fall 2025 ILLINOIS

Linked lists - adding a node

node* temp=(node*) malloc(sizeof(node));

In our code, cursor will
stand for the node currently
(cursor == NULL) being examined; in this
cursor = temp; example the head pointer

—— elsel /
temp->next = cursor;
cursor = temp;
///}/

* Deal with case of empty
list

ECE 220 - Fall 2025 ILLINOIS

Traversing a linked list

ECE 220 - Fall 2025

Traversing a linked list

head

 Head pointer points to the first node of the list.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Traversing a linked list

headptr
head

 Head pointer points to the first node of the list.

* Jo traverse the list we do the following

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Traversing a linked list

headptr
head

 Head pointer points to the first node of the list.
* Jo traverse the list we do the following

* Follow the pointers.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Traversing a linked list

headptr
head

 Head pointer points to the first node of the list.
* Jo traverse the list we do the following
* Follow the pointers.

* Display the contents of the nodes as they are traversed.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Traversing a linked list

headptr _
head tail

NULL
 Head pointer points to the first node of the list.

* Jo traverse the list we do the following
* Follow the pointers.
* Display the contents of the nodes as they are traversed.

e Stop when the next pointer points to NULL.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Linked lists - traversing

* |nserting an item in the list
« Unsorted list: Can insert at head or at
tail
» Sorted list: Insert so as to maintain
sorted property
* Traversing the list
e Deleting an item from the list
» Delete from head, tail or middle.

ECE 220 - Fall 2025 [ILLINOIS

Linked lists - traversing

* Recall that linked lists are
defined recursively. So to
traverse and print.

* |nserting an item in the list
« Unsorted list: Can insert at head or at
tail
» Sorted list: Insert so as to maintain
sorted property
* Traversing the list
e Deleting an item from the list
» Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Linked lists - traversing

* Recall that linked lists are
defined recursively. So to

traverse and print. void print list(node *cursor)
(cursor==NULL)

return;

o |f the list is empty do
nothing,

* |nserting an item in the list
« Unsorted list: Can insert at head or at
tail
» Sorted list: Insert so as to maintain
sorted property
* Traversing the list
e Deleting an item from the list
» Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Linked lists - traversing

* Recall that linked lists are
defined recursively. So to
traverse and print.

volid print list(node *cursor)/{
(cursor==NULL)
return;

o |f the list is empty do else/
nothing printf("%s was born in %d\n",

cursor->name,
cursor->byear) ;

* otherwise, print current
element &

* Traversing the list

ILLINOIS

ECE 220 - Fall 2025

Linked lists - traversing

* Recall that linked lists are
defined recursively. So to
traverse and print.

volid print list(node *cursor)/{
(cursor==NULL)

return;
* |f the list is empty do else(
nothing, printf("%s was born in %d\n",
cursor->name,
cursor->byear) ;
* otherwise, print current print_list(cursor->next);
element & ;

}

e recurse on the rest!

* Traversing the list

ECE 220 - Fall 2025 ILLINOIS

Exercise

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Exercise

e et us put together whatever we tried so far.

* Add the following nodes successively to the head of an empty list
and print the list out.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Exercise

e et us put together whatever we tried so far.

* Add the following nodes successively to the head of an empty list
and print the list out.

. {Alex, 1988} . {Mary, 1990}
+ {John, 1986) . {Sue, 1992

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Exercise

e et us put together whatever we tried so far.

* Add the following nodes successively to the head of an empty list
and print the list out.

. {Alex, 1988} . {Mary, 1990}
+ {John, 1986) . {Sue, 1992

* Functions to write (a) print 1ist to traverse node and (b)
add at head to add to head.

ECE 220 - Fall 2025 ILLINOIS

Code so far ...

vold add_at head(node *cursor, node *new) {

* —] o
void print list(node *cursor){ node *temp = malloc(sizeof(node));

(cursor==NULL)
temp->name = new->name;

return; temp->b r = n >b r
else{ emp->byea ew->byear;
printf("%s was born in %d\n", ,
1f (cursor == NULL)
cursor->name,
cursor = temp;
cursor->byear) ;
else({

print list(cursor->next);

}

temp->next = cursor;
cursor = temp;

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Code so far ...

vold add_at head(node *cursor, node *new) {

* —] o
void print list(node *cursor){ node *temp = malloc(sizeof(node));

(cursor==NULL)
temp->name = new->name;

return; temp->b r = n >b r
else{ emp->byea ew->byear;
printf("%s was born in %d\n", ,
1f (cursor == NULL)
cursor->name,
cursor = temp;
cursor->byear) ;
else({

print list(cursor->next);

}

temp->next = cursor;
cursor = temp;

What happened?

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

What happened?

voild add at head(node **cursor, node *new) {

node * temp = (node *) malloc(sizeof(node));
temp->name = new->name;
temp->next = new->next;

(*cursor == NULL)
*cursor = temp;
else{
temp->next = *cursor;
*cursor = temp;

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

What happened?

void add at head node *new) { headptr is a single pointer that

should always point to start of list.
Since we are relying on a function

node * temp = (node *) malloc(sizeof(node));
temp->name = new->name: to make an update, we need to
B pass-by-reference (remember the
temp->next = new->next; : :
defective swap function?)
(*cursor == NULL)
*cursor = temp;
else{
temp->next = *cursor;
*cursor = temp;
}

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

What happened?

void add_at_head headpt. is a single pointer that

should always point to start of list.
Since we are relying on a function

node * temp = (node *) malloc(sizeof(node));
temp->name = new->name; to make an update, we need to
B pass-by-reference (remember the
temp->next = new->next; : :
defective swap function?)
(*cursor == NULL)
*cursor = temp; A pointer to new is passed to add at head.
else{ We copy that onto the heap so that the
temp->next = *cursor; calling function can/may reuse the
*cursor = temp; parameter it passed in.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

What happened?

void add_at_head headpt. is a single pointer that

should always point to start of list.
Since we are relying on a function

node * temp = (node *) malloc(sizeof(node));
temp->name = new->name; to make an update, we need to
B pass-by-reference (remember the
temp->next = new->next; : :
defective swap function?)
(*cursor == NULL)
*cursor = temp; A pointer to new is passed to add at head.
else{ We copy that onto the heap so that the
temp->next = *cursor; calling function can/may reuse the
*cursor = temp; parameter it passed in.
}
}
(cursor == NULL)
cursor = temp;
else{
temp->next = cursor;
cursor = temp;
}

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

What happened?

void add_at_head headpt. is a single pointer that

should always point to start of list.
Since we are relying on a function

node * temp = (node *) malloc(sizeof(node));
temp->name = new->name: to make an update, we need to
B pass-by-reference (remember the
temp->next = new->next; : :
defective swap function?)
(*cursor == NULL)
*cursor = temp; A pointer to new is passed to add at head.
else/ We copy that onto the heap so that the
temp->next = *cursor; calling function can/may reuse the
*cursor = temp; parameter it passed in.
}
}
Since we are passing in a double (cursor == NULL)
pointer the code from slide #20 cursor = temp;
had to be carefully updated to else{
make the types match as done temp->next = CUrsor:;
above. cursor = temp;
}

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Adding a node - add at tall

ECE 220 - Fall 2025

Adding a node - add at tall

* A pure implementation of a singly linked-list is completely defined
by its head pointer.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Adding a node - add at tall

* A pure implementation of a singly linked-list is completely defined
by its head pointer.

* Aside: A doubly linked lists has a pointer to the next element as
well as the previous element (... tune in later in semester)

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Adding a node - add at tall

* A pure implementation of a singly linked-list is completely defined
by its head pointer.

* Aside: A doubly linked lists has a pointer to the next element as
well as the previous element (... tune in later in semester)

 Jo add an item at the tail position, we need to first find the tail.
How: The only element in the list whose next is NULL is the talil
element.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Adding a node - add at tall

* A pure implementation of a singly linked-list is completely defined
by its head pointer.

* Aside: A doubly linked lists has a pointer to the next element as
well as the previous element (... tune in later in semester)

 Jo add an item at the tail position, we need to first find the tail.
How: The only element in the list whose next is NULL is the talil
element.

* Inserting an item in the list
 Unsonrtedlist:- Gan-insert-at-head or at
tail

. T et |

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Adding at tall

e Just like
print list, keep
traversing/recursing
till tail element is
found. Then add the
new node there.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Adding at tall

vold add at tail(node #**cursor, node *new) {

(*cursor == NULL)
e Just like add at head(cursor, new);
: : else
prlnt_—llSt’ ke_ep add at tail(&(*cursor)->next, new);
traversing/recursing)

till tail element Is
found. Then add the
new node there.

ECE 220 - Fall 2025 ILLINOIS

Adding at tall

vold add at tail(node #**cursor, node *new) {

(*cursor == NULL)
e Just like add at head(cursor, new);
: : else
prlnt_—llSt’ ke_ep add at tail(&(*cursor)->next, new);
traversing/recursing)
till tail element is
found. Then add the Note: We don’t keep adding large blocks on the stack
new node there. In this version because we are passing around a

pointer to new. This is important!

If we did not do that, then recursion could
overflow available space on the stack very quickly!

ECE 220 - Fall 2025 ILLINOIS

Adding at tall

Method 2: | |
vold add at tail(node **headptr, node new) {
(*headptr == NULL)
* Exercise at home: add at head(headptr, new);
Rewrite the function on else
the right to be iterative. add at tail(&(*headptr)->next, new);
Hint, you may also ’

have to re-write the
add at head
function. Does It take a
new Or a new pointer?

ECE 220 - Fall 2025 ILLINOIS

Adding at tall

Method 2: | |
vold add at tail(node **headptr, node new) {
(*headptr == NULL)
* Exercise at home: add at head(headptr, new);
Rewrite the function on else
the right to be iterative. add at tail(&(*headptr)->next, new);
Hint, you may also ’

have to re-write the

add_at_head F I thy list don’t k dding things on
— = , or a lengthy list, we don’t keep addi i
function. Does 't_take?a on the stack in this version because we are
new Of a new pointer: passing around a pointer to new. If we did not,
then this version would be grossly inefficient.

ECE 220 - Fall 2025 ILLINOIS

Deleting a node from head

ECE 220 - Fall 2025

Deleting a node from head

e Jo delete a node from the
head is simple.

. |g| list: Cand ! :
tai
e Sorted list: Insert so as to maintain
sorted property

. T . |
* Deleting an item from the list
* Delete from head, tail or middle.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Deleting a node from head

e Jo delete a node from the
head is simple.

 Make a copy of the head

pointer node *old head = *headptr;

e
« Sorted list: Insert so as to maintain
sorted property
o Traversing-thelist-
* Deleting an item from the list
* Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Deleting a node from head

e Jo delete a node from the
head is simple.

 Make a copy of the head

pomter node *old head = *headptr;
* Shift the head pointer to its *headptr = (*headptr)->next;
next item

* Deleting an item from the list
* Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Deleting a node from head

e Jo delete a node from the
head is simple.

 Make a copy of the head

pointer node *old head = *headptr;

» Shift the head pointer to its *headptr = (*headptr)->next;
: free(old head);
next item

e Call free on a copy of the
head pointer

* Deleting an item from the list
* Delete from head, tail or middle.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Deleting a node from head

e Jo delete a node from the

head is simple volid del head(node **headptr){

(*headptr==NULL)

 Make a copy of the head return;
: else{
pomter node *old head = *headptr;
* Shift the head pointer to its *headptr = (*headptr)->next;
: free(old head);
next item —

}
e Call free on a copy of the }

head pointer
 What if list empty?

* Deleting an item from the list
* Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Deleting a node from head

e Jo delete a node from the

head is simple volid del head(node **headptr){

(*headptr==NULL)

 Make a copy of the head return;
: else{
pomter node *old head = *headptr;
e Shift the head pointer to its ;headp’ié ; (:lheadptr)->next7
. ree(old head);
next item \
e Call free on a copy of the }

head pointer

 What if list empty?

Exercise: Can we delete
the entire linked list with
. . . * Deleting an item from the list
JUSt thIS funCtlon? * Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Deleting the tail node

volid del tail(node **cursor)/{

. T . he i
. Deleti . : he i
* Deletefrom-head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Deleting the tail node

 Jo delete a node from the tail is void del tail(node **cursor){
more involved.

. T . he it
. Deleti i : the lit
* Deletefrom-head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Deleting the tail node

 Jo delete a node from the tail is void del tail(node **cursor){
more involved.

 First find the second to last
node - how?

.- . he i
. Deleti . : he
* Deletefrom-head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Deleting the tail node

 Jo delete a node from the tail is void del tail(node **cursor){
more involved. -

 First find the second to last
node - how?

node * second last = *cursor;
(second last->next->next != NULL)
second last=second last->next;

.- . he i
. Deleti . : he
* Deletefrom-head, tail or middle.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Deleting the tail node

 Jo delete a node from the tail is void del tail(node **cursor){
more involved. -

 First find the second to last
node - how?

 Call free on second last

elements next.
node * second last = *cursor;
(second last->next->next != NULL)
second last=second last->next;
free(second last->next);

.- . he i
. Deleti . : he
* Deletefrom-head, tail or middle.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Deleting the tail node

 Jo delete a node from the tail is void del tail(node **cursor){
more involved. -

 First find the second to last
node - how?

 Call free on second last
elements next.

e Set second last’s next node * second last = *cursor;
— (second last->next->next != NULL)
to NULL. second last=second last->next;

free(second last->next);
second last->next = NULL;

}

.- . he i
. Deleti . : he
* Deletefrom-head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Deleting the tail node

 To delete a node from the tail is void del tail(node **cursor){
more involved. (*cursor==NULL)
return;

 First find the second to last
node - how?

 Call free on second last
elements next.

e Set second last’s next node * second last = *cursor;
— (second last->next->next != NULL)
to NULL. second last=second last->next;

free(second last->next);
second last->next = NULL;

 What if list empty?
}

.- . he i
. Deleti . : he
* Deletefrom-head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Deleting the tail node

 Jo delete a node from the tail is void del tail(node #**cursor)/{
more involved. (*cursor==NULL)
| | return;
* First find the second to last ((*cursor)->next==NULL) {
node - how? free(*cursor);
*cursor=NULL;
 Call free on second last return- ’
4
elements next. 1
, node * second last = *cursor;
) _
Set second_last’s next (second last->next->next != NULL)
to NULL. second last=second last->next;

free(second last->next);
second last->next = NULL;

 What if list empty?

« What if singleton list? }

.- . he i
. Deleti . : he
* Deletefrom-head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

. . . i the |
tail
* Sorted list: Insert so as to maintain
sorted property
. Delet 9 . : he

e Delete from head, tail or middle.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

 Suppose our linked list is
already sorted by birth year.

headptr

1988 | @T—> NULL
. . . . ,
tail
1986 ‘ | . ggrrtteeg ;I)If(:p I:rs;rt so as to maintain

« Traversing-theist
. Deleti . : he i
e Delete from head, tail or middle.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

 Suppose our linked list is
already sorted by birth year.

Give a new node, how to
find its insertion point?

headptr

1988 | @===P> NULL i

1987‘ W
o KB

* Sorted list: Insert so as to maintain
sorted property
. Delet 9 . : he

e Delete from head, tail or middle.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

 Suppose our linked list is
already sorted by birth year.

Give a new node, how to Let us start from basics!
find its insertion point?

headptr
1988 | @T—> NULL
et L |
1987 ‘ ° W
1986 ‘ . ggrrtteeg ;I)If(:p I:rstsrt so as to maintain
[i I
) E"a|°e.'s”'g et |

e Delete from head, tail or middle.

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

° Suppose our ||nked ||S'|: iS void insert(node **cursor, node *new) {
already sorted by birth year.

Give a new node, how to
find the its insertion point?

N 07| |

NULL

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

° Suppose our ||nked ||S'|: iS void insert(node **cursor, node *new) {
already sorted by birth year.

Give a new node, how to
find the its insertion point?

N 07| |

NULL

If empty list, add at head.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

o Suppose our linked list Is void insert(node **cursor, node *new){
already sorted by birth year. ((*eursor == NULL) ||
add at head(cursor, new);
Give a new node, how to return;
find the its insertion point? }

1987\}\
NUL

L

If empty list, add at head.

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

o Suppose our linked list Is void insert(node **cursor, node *new){
already sorted by birth year. ((*eursor == NULL) ||
add at head(cursor, new);
Give a new node, how to return;
find the its insertion point? }

R 1087] @ |

PN 1088] +—>nuLL
What if not empty?

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

o Suppose our linked list Is void insert(node **cursor, node *new){
already sorted by birth year. ((*eursor == NULL) ||
add at head(cursor, new);
Give a new node, how to return;
find the its insertion point? }

e

PN 1088] +—>nuLL

What if not emptv? If first item is bigger than new node
4 ot empty still add at head!

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

° Suppose our ||nked ||S'|: iS void insert(node **cursor, node *new) {
already sorted by birth year. ((*cursor == NULL) ||

(*cursor)->byear>=new->byear) {
add at head(cursor, new);

Give a new node, how to } return;
find the its insertion point?

“viary (I

S 1988] 4—>nuLL

What if not emptv? If first item is bigger than new node
4 ot empty still add at head!

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

° Suppose our ||nked ||S'|: iS void insert(node **cursor, node *new) {
already sorted by birth year. ((*cursor == NULL) ||

(*cursor)->byear>=new->byear) {
add at head(cursor, new);

Give a new node, how to } return;
find the its insertion point?

o]

S 1988] 4—>nuLL

What if not emptv? If first item is bigger than new node
4 ot empty still add at head!

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

° Suppose our ||nked ||S'|: iS void insert(node **cursor, node *new) {
already sorted by birth year. ((*cursor == NULL) ||

(*cursor)->byear>=new->byear) {
add at head(cursor, new);

Give a new node, how to } return;
find the its insertion point?

Iy

S 1988] 4—>nuLL

What if not emptv? If first item is bigger than new node
4 ot empty still add at head!

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

° Suppose our ||nked ||S'|: iS void insert(node **cursor, node *new) {
already sorted by birth year. ((*cursor == NULL) ||

(*cursor)->byear>=new->byear) {
add at head(cursor, new);

Give a new node, how to } return;
find the its insertion point?

headptr 1087 ‘ ‘

1988 | @—>NULL
I 1986]

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

° Suppose our ||nked ||S'|: iS void insert(node **cursor, node *new) {
already sorted by birth year. ((*cursor == NULL) ||

(*cursor)->byear>=new->byear) {
add at head(cursor, new);

Give a new node, how to return;

: G : : }
find the its insertion point?
headptr 1987‘ ‘
1988| @—NULL General case: if list is not empty

and first item is smaller than
new, update pointer & recurse!

I 1986]

ECE 220 - Fall 2025 ILLINOIS

Insertion In a sorted linked list

° Suppose our ||nked ||S'|: iS void insert(node **cursor, node *new) {
already sorted by birth year. ((*cursor == NULL) ||

(*cursor)->byear>=new->byear) {
add at head(cursor, new);

Give a new node, how to } return;
find the its insertion point? else!
insert(&(*cursor)->next, new);
}
}
headptr 1987‘ ‘
1988| @~—>NULL General case: if list is not empty

and first item is smaller than
new, update pointer & recurse!

I 1986]

ECE 220 - Fall 2025 ILLINOIS

[|
» Jraversing-thelist-
- Batng anfom ot Deletion
e Delete from head, taill or middle.

UNIVERSITY OF=

ECE 220 - Fall 2025 ILLINOIS

[|
» Jraversing-thelist-
- Batng anfom ot Deletion
e Delete from head, taill or middle.

int delete node(node **headptr, char *name){

* Jo delete a node we have to
specify it by some identifying
quantity.

ECE 220 - Fall 2025 ILLINOIS

[|
» Jraversing-thelist-
- Batng anfom ot Deletion
e Delete from head, taill or middle.

int delete node(node **headptr, char *name){

 Jo delete a node we have to node *prev;
specify it by some identifying node feurrent = headptr;
quantity_ (current!=NULL) {
(strcmp(current->name, name)==0)
break;
r = current;
¢ Then We traverse/searCh Ec)ui\];entcz Clelrrent_>next;
through the list. Cases are: '

ECE 220 - Fall 2025 ILLINOIS

[|
» Jraversing-thelist-
- Batng anfom ot Deletion
e Delete from head, taill or middle.

int delete node(node **headptr, char *name){

 Jo delete a node we have to node *prev;
specify it by some identifying node feurrent = theadptr
quantity_ (current!=NULL) {
(strcmp(current->name, name)==0)
break;
r = current;
¢ Then We traverse/searCh Ec)ui\];entcz Clelrrent_>next;
through the list. Cases are: . (current-—NULL)

_1;

e |tem not found

ECE 220 - Fall 2025 ILLINOIS

[|
» Jraversing-thelist-
- Batng anfom ot Deletion
e Delete from head, taill or middle.

int delete node(node **headptr, char *name){

* Jo delete a node we have to node *prev;

specify it by some identifying node feurrent = Theadptr;

quantity_ (current!=NULL) {

(strcmp(current->name, name)==0)
break;
r = current;

¢ Then We traverse/searCh Ec)ui\];entcz Clelrrent_>next;

through the list. Cases are: . (current-—NULL)

~1:
e |tem not found (current == *headptr)

*headptr = current->next;

e |tem found at head

ECE 220 - Fall 2025 ILLINOIS

[|
» Jraversing-thelist-
- Batng anfom ot Deletion
e Delete from head, taill or middle.

int delete node(node **headptr, char *name){

* Jo delete a node we have to node *prev;

specify it by some identifying node feurrent = Theadptr;

quantity_ (current!=NULL) {

(strcmp(current->name, name)==0)
break;
r = current;

¢ Then We traverse/searCh Eui\;entcz Clelrrent_>next;

through the list. Cases are: . (current-—NULL)

~1:
e |tem not found (current == *headptr)

*headptr = current->next;
* |tem found at head
prev->next=current->next;
free(current);

e [tem found elsewhere return 0:

ECE 220 - Fall 2025 ILLINOIS

Search

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Search

» |eft as an exercise ... should be easy enough now that you have
seen how to look for, find and then delete a node!

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Search

» |eft as an exercise ... should be easy enough now that you have
seen how to look for, find and then delete a node!

e Note: When an element is found, there is no index to return; so
what should the search function do?

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Search

» |eft as an exercise ... should be easy enough now that you have
seen how to look for, find and then delete a node!

e Note: When an element is found, there is no index to return; so
what should the search function do?

e What to return when element is not found in list?

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

