
 ECE 220 - Fall 2025 Dr. Ivan Abraham

ECE 220
Lecture x0011 - 10/23

Linked Lists - Introduction

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap
• Last time we discussed:

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap
• Last time we discussed:

• Automatic vs. dynamic
memory allocation

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap
• Last time we discussed:

• Automatic vs. dynamic
memory allocation

• malloc family of functions

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap
• Last time we discussed:

• Automatic vs. dynamic
memory allocation

• malloc family of functions

• calloc

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap
• Last time we discussed:

• Automatic vs. dynamic
memory allocation

• malloc family of functions

• calloc

• realloc

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap
• Last time we discussed:

• Automatic vs. dynamic
memory allocation

• malloc family of functions

• calloc

• realloc

• Calling free to release
memory

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap
• Last time we discussed:

• Automatic vs. dynamic
memory allocation

• malloc family of functions

• calloc

• realloc

• Calling free to release
memory

• Allocating 2D arrays

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap
• Last time we discussed:

• Automatic vs. dynamic
memory allocation

• malloc family of functions

• calloc

• realloc

• Calling free to release
memory

• Allocating 2D arrays

• Memory leak vs. seg-faults

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap
• Last time we discussed:

• Automatic vs. dynamic
memory allocation

• malloc family of functions

• calloc

• realloc

• Calling free to release
memory

• Allocating 2D arrays

• Memory leak vs. seg-faults

• valgrind to detect
memory leaks.

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Lesson objectives

3

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Lesson objectives
• Define and describe the structure and components of a linked list, including nodes,

head, and tail pointers.

3

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Lesson objectives
• Define and describe the structure and components of a linked list, including nodes,

head, and tail pointers.

• Compare and contrast arrays and linked lists with respect to memory allocation,
data access, and efficiency of insertion and deletion operations.

3

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Lesson objectives
• Define and describe the structure and components of a linked list, including nodes,

head, and tail pointers.

• Compare and contrast arrays and linked lists with respect to memory allocation,
data access, and efficiency of insertion and deletion operations.

• Implement and test fundamental linked list operations in C, including inserting,
traversing, and deleting nodes.

3

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Lesson objectives
• Define and describe the structure and components of a linked list, including nodes,

head, and tail pointers.

• Compare and contrast arrays and linked lists with respect to memory allocation,
data access, and efficiency of insertion and deletion operations.

• Implement and test fundamental linked list operations in C, including inserting,
traversing, and deleting nodes.

• Apply dynamic memory allocation to create and modify linked list structures safely.

3

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Lesson objectives
• Define and describe the structure and components of a linked list, including nodes,

head, and tail pointers.

• Compare and contrast arrays and linked lists with respect to memory allocation,
data access, and efficiency of insertion and deletion operations.

• Implement and test fundamental linked list operations in C, including inserting,
traversing, and deleting nodes.

• Apply dynamic memory allocation to create and modify linked list structures safely.

• Evaluate and troubleshoot edge cases in linked list programs, such as handling
empty or singleton lists.

3

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Today - linked list

4

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Today - linked list

• What is a list … really?

4

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Today - linked list

• What is a list … really?

• A list is collection of elements/items which can be accessed
sequentially.

4

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Today - linked list

• What is a list … really?

• A list is collection of elements/items which can be accessed
sequentially.

• Entertains the concept of order; first, second, last.

4

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Today - linked list

• What is a list … really?

• A list is collection of elements/items which can be accessed
sequentially.

• Entertains the concept of order; first, second, last.

• Note: An empty list is still a list.

4

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Today - linked list

• What is a list … really?

• A list is collection of elements/items which can be accessed
sequentially.

• Entertains the concept of order; first, second, last.

• Note: An empty list is still a list.

• An array is an indexed list; i.e. can access elements by their index.

4

 ECE 220 - Fall 2025 Dr. Ivan Abraham 5

Linked list

5

 ECE 220 - Fall 2025 Dr. Ivan Abraham 5

Linked list

• A linked list is an ordered collection of items (often
called nodes), each of which contains some data,
connected using pointers (hence the link part).

5

 ECE 220 - Fall 2025 Dr. Ivan Abraham 5

Linked list

• A linked list is an ordered collection of items (often
called nodes), each of which contains some data,
connected using pointers (hence the link part).

• A node is a collection of two sub-elements or parts.

5

 ECE 220 - Fall 2025 Dr. Ivan Abraham 5

Linked list

• A linked list is an ordered collection of items (often
called nodes), each of which contains some data,
connected using pointers (hence the link part).

• A node is a collection of two sub-elements or parts.

5

 ECE 220 - Fall 2025 Dr. Ivan Abraham 5

Linked list

• A linked list is an ordered collection of items (often
called nodes), each of which contains some data,
connected using pointers (hence the link part).

• A node is a collection of two sub-elements or parts.

• A data part that stores the actual element

10

Data

5

 ECE 220 - Fall 2025 Dr. Ivan Abraham 5

Linked list

• A linked list is an ordered collection of items (often
called nodes), each of which contains some data,
connected using pointers (hence the link part).

• A node is a collection of two sub-elements or parts.

• A data part that stores the actual element

• And a next part (pointer) that stores the
address of the next node.

10 pointer

Data Next

5

 ECE 220 - Fall 2025 Dr. Ivan Abraham 5

Linked list

• A linked list is an ordered collection of items (often
called nodes), each of which contains some data,
connected using pointers (hence the link part).

• A node is a collection of two sub-elements or parts.

• A data part that stores the actual element

• And a next part (pointer) that stores the
address of the next node.

10 pointer

Data Next

5

Node

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked list

6

 ECE 220 - Fall 2025 Dr. Ivan Abraham

0

head

Linked list

• The first node in the list is called the head

6

 ECE 220 - Fall 2025 Dr. Ivan Abraham

0

head

Linked list

• The first node in the list is called the head

• Accessed using a pointer called head pointer

6

headptr

 ECE 220 - Fall 2025 Dr. Ivan Abraham

0

head

Linked list

• The first node in the list is called the head

• Accessed using a pointer called head pointer

• Used as the starting reference to traverse the list

6

1 2

headptr

 ECE 220 - Fall 2025 Dr. Ivan Abraham

0

head

Linked list

• The first node in the list is called the head

• Accessed using a pointer called head pointer

• Used as the starting reference to traverse the list

• The last node in the list is called the tail.

6

1 2

headptr

3

tail

 ECE 220 - Fall 2025 Dr. Ivan Abraham

0

head

Linked list

• The first node in the list is called the head

• Accessed using a pointer called head pointer

• Used as the starting reference to traverse the list

• The last node in the list is called the tail.

• The tail may contain data, but it always points to NULL value

6

1 2

headptr

3

tail

NULL

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

7

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

7

Array
(can be automatic or dynamic)

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

7

grid [0]
grid [1]
grid [2]
grid [3]
grid [4]
grid [5]
grid [6]
grid [7]
grid [8]
grid [9]

Array
(can be automatic or dynamic)

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

7

grid [0]
grid [1]
grid [2]
grid [3]
grid [4]
grid [5]
grid [6]
grid [7]
grid [8]
grid [9]

Memory

Memory allocated
for array grid

Array
(can be automatic or dynamic)

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

7

grid [0]
grid [1]
grid [2]
grid [3]
grid [4]
grid [5]
grid [6]
grid [7]
grid [8]
grid [9]

Memory

Memory allocated
for array grid

Array
(can be automatic or dynamic)

Linked list
(dynamic only)

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

7

grid [0]
grid [1]
grid [2]
grid [3]
grid [4]
grid [5]
grid [6]
grid [7]
grid [8]
grid [9]

Memory

Memory allocated
for array grid

A linked list in memory

Array
(can be automatic or dynamic)

Linked list
(dynamic only)

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

8

Array Linked list

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

8

Array Linked list

Memory Allocation Automatic / Dynamic Dynamic

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

8

Array Linked list

Memory Allocation Automatic / Dynamic Dynamic

Memory Structure Contiguous Not necessarily consecutive

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

8

Element 0

Element 1

Element 2

Array Linked list

Memory Allocation Automatic / Dynamic Dynamic

Memory Structure Contiguous Not necessarily consecutive

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

8

0

NULL

headptr
head

1 2 3

tail
Element 0

Element 1

Element 2

Array Linked list

Memory Allocation Automatic / Dynamic Dynamic

Memory Structure Contiguous Not necessarily consecutive

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

8

0

NULL

headptr
head

1 2 3

tail
Element 0

Element 1

Element 2

Array Linked list

Memory Allocation Automatic / Dynamic Dynamic

Memory Structure Contiguous Not necessarily consecutive

Order of Access Random Sequential

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Array vs. linked list

8

0

NULL

headptr
head

1 2 3

tail
Element 0

Element 1

Element 2

Array Linked list

Memory Allocation Automatic / Dynamic Dynamic

Memory Structure Contiguous Not necessarily consecutive

Order of Access Random Sequential

Insertion / Deletion Create/delete space, then shift
all successive elements Change pointer address

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Basic operations

9

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Basic operations
• Inserting an item in the list

9

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Basic operations
• Inserting an item in the list

• Unsorted list: Can insert at head or at tail

9

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Basic operations
• Inserting an item in the list

• Unsorted list: Can insert at head or at tail

• Sorted list: Insert so as to maintain sorted property

9

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Basic operations
• Inserting an item in the list

• Unsorted list: Can insert at head or at tail

• Sorted list: Insert so as to maintain sorted property

• Traversing the list

9

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Basic operations
• Inserting an item in the list

• Unsorted list: Can insert at head or at tail

• Sorted list: Insert so as to maintain sorted property

• Traversing the list

• Deleting an item from the list

9

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Basic operations
• Inserting an item in the list

• Unsorted list: Can insert at head or at tail

• Sorted list: Insert so as to maintain sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or by key.

9

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Declaring a linked list

10

Example: Student record

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Declaring a linked list

10

typedef struct StudentStruct{
 int UIN;
 char *netid;
 float GPA;
}student;

Example: Student record

Using structs

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Declaring a linked list

10

typedef struct StudentStruct{
 int UIN;
 char *netid;
 float GPA;
}student;

typedef struct StudentStruct{
 int UIN;
 char *netid;
 float GPA;
 struct StudentStruct *next;
}node;

Example: Student record

Using structs Using linked lists

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Declaring a linked list

11

Example: A person

typedef struct person{
 char *name;
 unsigned int birthyear;
}Person;

typedef struct person{
 char *name;
 unsigned int byear;
 struct person *next;
}node;

Using structs Using linked lists

 ECE 220 - Fall 2025 Dr. Ivan Abraham 12

Declaring a linked list
typedef struct person{
 char *name;
 unsigned int byear;
 struct person *next;
}node;

 ECE 220 - Fall 2025 Dr. Ivan Abraham 12

Declaring a linked list

• What should be the
empty list?

typedef struct person{
 char *name;
 unsigned int byear;
 struct person *next;
}node;

 ECE 220 - Fall 2025 Dr. Ivan Abraham 12

Declaring a linked list

• What should be the
empty list?

headptr

NULL

typedef struct person{
 char *name;
 unsigned int byear;
 struct person *next;
}node;

 ECE 220 - Fall 2025 Dr. Ivan Abraham 12

Declaring a linked list

• What should be the
empty list?

headptr

NULL

typedef struct person{
 char *name;
 unsigned int byear;
 struct person *next;
}node;

node* headptr = NULL;

typedef struct person{
 char *name;
 unsigned int byear;
 struct person *next;
}node;

 ECE 220 - Fall 2025 Dr. Ivan Abraham

• What should be the
empty list?

• What should be the
singleton list?

13

Declaring a linked list

headptr

NULL

ttttttt ssssss {
cccc *nnnn;
uuuuuuuu iii ;
ssssss *nnnn;

}nnnn;

nnnn* ;

 ECE 220 - Fall 2025 Dr. Ivan Abraham

• What should be the
empty list?

• What should be the
singleton list?

13

Declaring a linked list

headptr

NULL

Alex 1988

headptr

NULL

ttttttt ssssss {
cccc *nnnn;
uuuuuuuu iii ;
ssssss *nnnn;

}nnnn;

nnnn* ;

 ECE 220 - Fall 2025 Dr. Ivan Abraham

• What should be the
empty list?

• What should be the
singleton list?

13

Declaring a linked list

headptr

NULL

Alex 1988

headptr

NULL

typedef struct person{
 char *name;
 unsigned int byear;
 struct person *next;
}node;

node* headptr;
node* temp=(node*) malloc(sizeof(node));
temp->name="Alex"
temp->byear=1988;
temp->next=NULL;
headptr = temp;

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - more elements

14

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - more elements

• Suppose we want to add another node

14

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - more elements

• Suppose we want to add another node

{“John”, 1986, }

14

John 1986

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - more elements

• Suppose we want to add another node

{“John”, 1986, }

• Should the node be added at the head or tail?

14

John 1986

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - more elements

• Suppose we want to add another node

{“John”, 1986, }

• Should the node be added at the head or tail?

• For sorted linked lists, this node should go at the head

14

John 1986

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - more elements

• Suppose we want to add another node

{“John”, 1986, }

• Should the node be added at the head or tail?

• For sorted linked lists, this node should go at the head

• For plain linked lists, we get to choose.

14

John 1986

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

15

Alex 1988

headptr

NULL

John 1986

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

15

Alex 1988

headptr

NULL

John 1986

• Suppose we want to add at
head.

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

15

Alex 1988

headptr

NULL

John 1986

• Suppose we want to add at
head.

• What needs to be done?

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

15

Alex 1988

headptr

NULL

John 1986

• Suppose we want to add at
head.

• What needs to be done?

• New node should point to
current head.

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

15

Alex 1988

headptr

NULL

John 1986

• Suppose we want to add at
head.

• What needs to be done?

• New node should point to
current head.

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

15

Alex 1988

headptr

NULL

John 1986

• Suppose we want to add at
head.

• What needs to be done?

• New node should point to
current head.

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

15

Alex 1988

headptr

NULL

John 1986

• Suppose we want to add at
head.

• What needs to be done?

• New node should point to
current head.

• Current head should be
updated to new node. • Inserting an item in the list

• Unsorted list: Can insert at head or at
tail

• Sorted list: Insert so as to maintain
sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

16

node* temp=(node*) malloc(sizeof(node));
…
…
if (cursor == NULL)
 cursor = temp;
else{

• Suppose we want to add

• What needs to be done?

• New node should point to
current head.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

16

node* temp=(node*) malloc(sizeof(node));
…
…
if (cursor == NULL)
 cursor = temp;
else{
 temp->next = cursor;

In our code, cursor will
stand for the node currently

being examined; in this
example the head pointer

• Suppose we want to add

• What needs to be done?

• New node should point to
current head.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

16

node* temp=(node*) malloc(sizeof(node));
…
…
if (cursor == NULL)
 cursor = temp;
else{
 temp->next = cursor;

In our code, cursor will
stand for the node currently

being examined; in this
example the head pointer

• Suppose we want to add

• What needs to be done?

• New node should point to
current head.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

16

node* temp=(node*) malloc(sizeof(node));
…
…
if (cursor == NULL)
 cursor = temp;
else{
 temp->next = cursor;
 cursor = temp;
}

In our code, cursor will
stand for the node currently

being examined; in this
example the head pointer

• Suppose we want to add

• What needs to be done?

• New node should point to
current head.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

16

node* temp=(node*) malloc(sizeof(node));
…
…
if (cursor == NULL)
 cursor = temp;
else{
 temp->next = cursor;
 cursor = temp;
}

In our code, cursor will
stand for the node currently

being examined; in this
example the head pointer

• Suppose we want to add

• What needs to be done?

• New node should point to
current head.

• Current head should be
updated to new node.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - adding a node

16

node* temp=(node*) malloc(sizeof(node));
…
…
if (cursor == NULL)
 cursor = temp;
else{
 temp->next = cursor;
 cursor = temp;
}

In our code, cursor will
stand for the node currently

being examined; in this
example the head pointer

• Suppose we want to add

• What needs to be done?

• New node should point to
current head.

• Current head should be
updated to new node.

• Deal with case of empty
list

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Traversing a linked list

17

 ECE 220 - Fall 2025 Dr. Ivan Abraham

0

headptr
head

Traversing a linked list

• Head pointer points to the first node of the list.

17

 ECE 220 - Fall 2025 Dr. Ivan Abraham

0

headptr
head

Traversing a linked list

• Head pointer points to the first node of the list.

• To traverse the list we do the following

17

 ECE 220 - Fall 2025 Dr. Ivan Abraham

0

headptr
head

Traversing a linked list

• Head pointer points to the first node of the list.

• To traverse the list we do the following

• Follow the pointers.

17

1 2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

0

headptr
head

Traversing a linked list

• Head pointer points to the first node of the list.

• To traverse the list we do the following

• Follow the pointers.

• Display the contents of the nodes as they are traversed.

17

1 2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

0

headptr
head

Traversing a linked list

• Head pointer points to the first node of the list.

• To traverse the list we do the following

• Follow the pointers.

• Display the contents of the nodes as they are traversed.

• Stop when the next pointer points to NULL.

17

1 2 3

NULL

tail

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - traversing

18

void print_list(node *cursor){
 if (cursor==NULL)
 return;
 else{
 printf("%s was born in %d\n",
 cursor->name,
 cursor->byear);
 print_list(cursor->next);
 }
} • Inserting an item in the list

• Unsorted list: Can insert at head or at
tail

• Sorted list: Insert so as to maintain
sorted property

• Traversing the list
• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - traversing
• Recall that linked lists are

defined recursively. So to
traverse and print.

18

void print_list(node *cursor){
 if (cursor==NULL)
 return;
 else{
 printf("%s was born in %d\n",
 cursor->name,
 cursor->byear);
 print_list(cursor->next);
 }
} • Inserting an item in the list

• Unsorted list: Can insert at head or at
tail

• Sorted list: Insert so as to maintain
sorted property

• Traversing the list
• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - traversing
• Recall that linked lists are

defined recursively. So to
traverse and print.

• If the list is empty do
nothing,

18

void print_list(node *cursor){
 if (cursor==NULL)
 return;
 else{
 printf("%s was born in %d\n",
 cursor->name,
 cursor->byear);
 print_list(cursor->next);
 }
} • Inserting an item in the list

• Unsorted list: Can insert at head or at
tail

• Sorted list: Insert so as to maintain
sorted property

• Traversing the list
• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - traversing
• Recall that linked lists are

defined recursively. So to
traverse and print.

• If the list is empty do
nothing,

• otherwise, print current
element &

18

void print_list(node *cursor){
 if (cursor==NULL)
 return;
 else{
 printf("%s was born in %d\n",
 cursor->name,
 cursor->byear);
 print_list(cursor->next);
 }
} • Inserting an item in the list

• Unsorted list: Can insert at head or at
tail

• Sorted list: Insert so as to maintain
sorted property

• Traversing the list
• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Linked lists - traversing
• Recall that linked lists are

defined recursively. So to
traverse and print.

• If the list is empty do
nothing,

• otherwise, print current
element &

• recurse on the rest!

18

void print_list(node *cursor){
 if (cursor==NULL)
 return;
 else{
 printf("%s was born in %d\n",
 cursor->name,
 cursor->byear);
 print_list(cursor->next);
 }
} • Inserting an item in the list

• Unsorted list: Can insert at head or at
tail

• Sorted list: Insert so as to maintain
sorted property

• Traversing the list
• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Exercise

19

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Exercise
• Let us put together whatever we tried so far.

• Add the following nodes successively to the head of an empty list
and print the list out.

19

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Exercise
• Let us put together whatever we tried so far.

• Add the following nodes successively to the head of an empty list
and print the list out.

19

• {Alex, 1988}

• {John, 1986}

• {Mary, 1990}

• {Sue, 1992}

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Exercise
• Let us put together whatever we tried so far.

• Add the following nodes successively to the head of an empty list
and print the list out.

19

• {Alex, 1988}

• {John, 1986}

• {Mary, 1990}

• {Sue, 1992}

• Functions to write (a) print_list to traverse node and (b)
add_at_head to add to head.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Code so far …

20

void print_list(node *cursor){
 if (cursor==NULL)
 return;
 else{
 printf("%s was born in %d\n",
 cursor->name,
 cursor->byear);
 print_list(cursor->next);
 }
}

void add_at_head(node *cursor, node *new){
 node *temp = malloc(sizeof(node));

 temp->name = new->name;
 temp->byear = new->byear;

 if (cursor == NULL)
 cursor = temp;
 else{
 temp->next = cursor;
 cursor = temp;
 }
}

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Code so far …

20

void print_list(node *cursor){
 if (cursor==NULL)
 return;
 else{
 printf("%s was born in %d\n",
 cursor->name,
 cursor->byear);
 print_list(cursor->next);
 }
}

void add_at_head(node *cursor, node *new){
 node *temp = malloc(sizeof(node));

 temp->name = new->name;
 temp->byear = new->byear;

 if (cursor == NULL)
 cursor = temp;
 else{
 temp->next = cursor;
 cursor = temp;
 }
}

What happened?

 ECE 220 - Fall 2025 Dr. Ivan Abraham

What happened?

21

void add_at_head(node **cursor, node *new){

 node * temp = (node *) malloc(sizeof(node));
 temp->name = new->name;
 temp->next = new->next;

 if (*cursor == NULL)
 *cursor = temp;
 else{
 temp->next = *cursor;
 *cursor = temp;
 }
}

 ECE 220 - Fall 2025 Dr. Ivan Abraham

What happened?

21

void add_at_head(node **cursor, node *new){

 node * temp = (node *) malloc(sizeof(node));
 temp->name = new->name;
 temp->next = new->next;

 if (*cursor == NULL)
 *cursor = temp;
 else{
 temp->next = *cursor;
 *cursor = temp;
 }
}

headptr is a single pointer that
should always point to start of list.
Since we are relying on a function

to make an update, we need to
pass-by-reference (remember the

defective swap function?)

 ECE 220 - Fall 2025 Dr. Ivan Abraham

What happened?

21

void add_at_head(node **cursor, node *new){

 node * temp = (node *) malloc(sizeof(node));
 temp->name = new->name;
 temp->next = new->next;

 if (*cursor == NULL)
 *cursor = temp;
 else{
 temp->next = *cursor;
 *cursor = temp;
 }
}

headptr is a single pointer that
should always point to start of list.
Since we are relying on a function

to make an update, we need to
pass-by-reference (remember the

defective swap function?)

A pointer to new is passed to add_at_head.
We copy that onto the heap so that the

calling function can/may reuse the
parameter it passed in.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

What happened?

21

void add_at_head(node **cursor, node *new){

 node * temp = (node *) malloc(sizeof(node));
 temp->name = new->name;
 temp->next = new->next;

 if (*cursor == NULL)
 *cursor = temp;
 else{
 temp->next = *cursor;
 *cursor = temp;
 }
}

headptr is a single pointer that
should always point to start of list.
Since we are relying on a function

to make an update, we need to
pass-by-reference (remember the

defective swap function?)

A pointer to new is passed to add_at_head.
We copy that onto the heap so that the

calling function can/may reuse the
parameter it passed in.

if (cursor == NULL)
 cursor = temp;
else{
 temp->next = cursor;
 cursor = temp;
}

 ECE 220 - Fall 2025 Dr. Ivan Abraham

What happened?

21

void add_at_head(node **cursor, node *new){

 node * temp = (node *) malloc(sizeof(node));
 temp->name = new->name;
 temp->next = new->next;

 if (*cursor == NULL)
 *cursor = temp;
 else{
 temp->next = *cursor;
 *cursor = temp;
 }
}

headptr is a single pointer that
should always point to start of list.
Since we are relying on a function

to make an update, we need to
pass-by-reference (remember the

defective swap function?)

A pointer to new is passed to add_at_head.
We copy that onto the heap so that the

calling function can/may reuse the
parameter it passed in.

Since we are passing in a double
pointer the code from slide #20
had to be carefully updated to
make the types match as done

above.

if (cursor == NULL)
 cursor = temp;
else{
 temp->next = cursor;
 cursor = temp;
}

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Adding a node - add at tail

22

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Adding a node - add at tail
• A pure implementation of a singly linked-list is completely defined

by its head pointer.

22

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Adding a node - add at tail
• A pure implementation of a singly linked-list is completely defined

by its head pointer.

• Aside: A doubly linked lists has a pointer to the next element as
well as the previous element (… tune in later in semester)

22

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Adding a node - add at tail
• A pure implementation of a singly linked-list is completely defined

by its head pointer.

• Aside: A doubly linked lists has a pointer to the next element as
well as the previous element (… tune in later in semester)

• To add an item at the tail position, we need to first find the tail.
How: The only element in the list whose next is NULL is the tail
element.

22

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Adding a node - add at tail
• A pure implementation of a singly linked-list is completely defined

by its head pointer.

• Aside: A doubly linked lists has a pointer to the next element as
well as the previous element (… tune in later in semester)

• To add an item at the tail position, we need to first find the tail.
How: The only element in the list whose next is NULL is the tail
element.

22

• Inserting an item in the list
• Unsorted list: Can insert at head or at

tail
• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Adding at tail

• Just like
print_list, keep
traversing/recursing
till tail element is
found. Then add the
new node there.

23

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Adding at tail

• Just like
print_list, keep
traversing/recursing
till tail element is
found. Then add the
new node there.

23

void add_at_tail(node **cursor, node *new){
 if (*cursor == NULL)
 add_at_head(cursor, new);
 else
 add_at_tail(&(*cursor)->next, new);
}

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Adding at tail

• Just like
print_list, keep
traversing/recursing
till tail element is
found. Then add the
new node there.

23

void add_at_tail(node **cursor, node *new){
 if (*cursor == NULL)
 add_at_head(cursor, new);
 else
 add_at_tail(&(*cursor)->next, new);
}

Note: We don’t keep adding large blocks on the stack
in this version because we are passing around a

pointer to new. This is important!

If we did not do that, then recursion could
overflow available space on the stack very quickly!

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Adding at tail
Method 2:

• Exercise at home:
Rewrite the function on
the right to be iterative.
Hint, you may also
have to re-write the
add_at_head
function. Does it take a
new or a new pointer?

24

void add_at_tail(node **headptr, node new){
 if (*headptr == NULL)
 add_at_head(headptr, new);
 else
 add_at_tail(&(*headptr)->next, new);
}

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Adding at tail
Method 2:

• Exercise at home:
Rewrite the function on
the right to be iterative.
Hint, you may also
have to re-write the
add_at_head
function. Does it take a
new or a new pointer?

24

void add_at_tail(node **headptr, node new){
 if (*headptr == NULL)
 add_at_head(headptr, new);
 else
 add_at_tail(&(*headptr)->next, new);
}

For a lengthy list, we don’t keep adding things on
on the stack in this version because we are

passing around a pointer to new. If we did not,
then this version would be grossly inefficient.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting a node from head

25

void del_head(node **headptr){
 if (*headptr==NULL)
 return;
 else{

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting a node from head
• To delete a node from the

head is simple.

25

void del_head(node **headptr){
 if (*headptr==NULL)
 return;
 else{

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting a node from head
• To delete a node from the

head is simple.
• Make a copy of the head

pointer

25

void del_head(node **headptr){
 if (*headptr==NULL)
 return;
 else{
 node *old_head = *headptr;

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting a node from head
• To delete a node from the

head is simple.
• Make a copy of the head

pointer
• Shift the head pointer to its

next item

25

void del_head(node **headptr){
 if (*headptr==NULL)
 return;
 else{
 node *old_head = *headptr;
 *headptr = (*headptr)->next;

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting a node from head
• To delete a node from the

head is simple.
• Make a copy of the head

pointer
• Shift the head pointer to its

next item
• Call free on a copy of the

head pointer

25

void del_head(node **headptr){
 if (*headptr==NULL)
 return;
 else{
 node *old_head = *headptr;
 *headptr = (*headptr)->next;
 free(old_head);
 }
}

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting a node from head
• To delete a node from the

head is simple.
• Make a copy of the head

pointer
• Shift the head pointer to its

next item
• Call free on a copy of the

head pointer

• What if list empty?

25

void del_head(node **headptr){
 if (*headptr==NULL)
 return;
 else{
 node *old_head = *headptr;
 *headptr = (*headptr)->next;
 free(old_head);
 }
}

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting a node from head
• To delete a node from the

head is simple.
• Make a copy of the head

pointer
• Shift the head pointer to its

next item
• Call free on a copy of the

head pointer

• What if list empty?

25

void del_head(node **headptr){
 if (*headptr==NULL)
 return;
 else{
 node *old_head = *headptr;
 *headptr = (*headptr)->next;
 free(old_head);
 }
}

Exercise: Can we delete
the entire linked list with

just this function?

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting the tail node

26

void del_tail(node **cursor){
 if (*cursor==NULL)
 return;
 if ((*cursor)->next==NULL){
 free(*cursor);
 *cursor=NULL;
 return;
 }

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting the tail node

26

• To delete a node from the tail is
more involved.

void del_tail(node **cursor){
 if (*cursor==NULL)
 return;
 if ((*cursor)->next==NULL){
 free(*cursor);
 *cursor=NULL;
 return;
 }

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting the tail node

26

• To delete a node from the tail is
more involved.

• First find the second to last
node - how?

void del_tail(node **cursor){
 if (*cursor==NULL)
 return;
 if ((*cursor)->next==NULL){
 free(*cursor);
 *cursor=NULL;
 return;
 }

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting the tail node

26

• To delete a node from the tail is
more involved.

• First find the second to last
node - how?

void del_tail(node **cursor){
 if (*cursor==NULL)
 return;
 if ((*cursor)->next==NULL){
 free(*cursor);
 *cursor=NULL;
 return;
 }
 node * second_last = *cursor;
 while (second_last->next->next != NULL)
 second_last=second_last->next;

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting the tail node

26

• To delete a node from the tail is
more involved.

• First find the second to last
node - how?

• Call free on second_last
elements next.

void del_tail(node **cursor){
 if (*cursor==NULL)
 return;
 if ((*cursor)->next==NULL){
 free(*cursor);
 *cursor=NULL;
 return;
 }
 node * second_last = *cursor;
 while (second_last->next->next != NULL)
 second_last=second_last->next;
 free(second_last->next);

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting the tail node

26

• To delete a node from the tail is
more involved.

• First find the second to last
node - how?

• Call free on second_last
elements next.

• Set second_last’s next
to NULL.

void del_tail(node **cursor){
 if (*cursor==NULL)
 return;
 if ((*cursor)->next==NULL){
 free(*cursor);
 *cursor=NULL;
 return;
 }
 node * second_last = *cursor;
 while (second_last->next->next != NULL)
 second_last=second_last->next;
 free(second_last->next);
 second_last->next = NULL;
}

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting the tail node

26

• To delete a node from the tail is
more involved.

• First find the second to last
node - how?

• Call free on second_last
elements next.

• Set second_last’s next
to NULL.

• What if list empty?

void del_tail(node **cursor){
 if (*cursor==NULL)
 return;
 if ((*cursor)->next==NULL){
 free(*cursor);
 *cursor=NULL;
 return;
 }
 node * second_last = *cursor;
 while (second_last->next->next != NULL)
 second_last=second_last->next;
 free(second_last->next);
 second_last->next = NULL;
}

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deleting the tail node

26

• To delete a node from the tail is
more involved.

• First find the second to last
node - how?

• Call free on second_last
elements next.

• Set second_last’s next
to NULL.

• What if list empty?

• What if singleton list?

void del_tail(node **cursor){
 if (*cursor==NULL)
 return;
 if ((*cursor)->next==NULL){
 free(*cursor);
 *cursor=NULL;
 return;
 }
 node * second_last = *cursor;
 while (second_last->next->next != NULL)
 second_last=second_last->next;
 free(second_last->next);
 second_last->next = NULL;
}

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list

27

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property
• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

27

Alex 1988

headptr

NULL

John 1986

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property
• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find its insertion point?

27

Alex 1988

headptr

NULL

John 1986
Mary 1987

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property
• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find its insertion point?

27

Alex 1988

headptr

NULL

John 1986
Mary 1987

Let us start from basics!

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property
• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Mary 1987

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find the its insertion point?

28

headptr

NULL

void insert(node **cursor, node *new){
 if ((*cursor == NULL) ||
 (*headptr)->byear>=new->byear){
 add_at_head(cursor, new);
 return;
 }
 else{
 insert(&(*cursor)->next, new);
 }
}

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Mary 1987

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find the its insertion point?

28

headptr

NULL

void insert(node **cursor, node *new){
 if ((*cursor == NULL) ||
 (*headptr)->byear>=new->byear){
 add_at_head(cursor, new);
 return;
 }
 else{
 insert(&(*cursor)->next, new);
 }
}

If empty list, add at head.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Mary 1987

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find the its insertion point?

28

headptr

NULL

void insert(node **cursor, node *new){
 if ((*cursor == NULL) ||
 (*headptr)->byear>=new->byear){
 add_at_head(cursor, new);
 return;
 }
 else{
 insert(&(*cursor)->next, new);
 }
}

If empty list, add at head.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find the its insertion point?

29

void insert(node **cursor, node *new){
 if ((*cursor == NULL) ||
 (*cursor)->byear>=new->byear){
 add_at_head(cursor, new);
 return;
 }
 else{
 insert(&(*cursor)->next, new);
 }
}

What if not empty?

Mary 1987

Alex 1988

headptr

NULL

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find the its insertion point?

29

void insert(node **cursor, node *new){
 if ((*cursor == NULL) ||
 (*cursor)->byear>=new->byear){
 add_at_head(cursor, new);
 return;
 }
 else{
 insert(&(*cursor)->next, new);
 }
}

What if not empty?

Mary 1987

Alex 1988

headptr

NULL

If first item is bigger than new node
still add at head!

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find the its insertion point?

29

void insert(node **cursor, node *new){
 if ((*cursor == NULL) ||
 (*cursor)->byear>=new->byear){
 add_at_head(cursor, new);
 return;
 }
 else{
 insert(&(*cursor)->next, new);
 }
}

What if not empty?

Mary 1987

Alex 1988

headptr

NULL

If first item is bigger than new node
still add at head!

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find the its insertion point?

29

void insert(node **cursor, node *new){
 if ((*cursor == NULL) ||
 (*cursor)->byear>=new->byear){
 add_at_head(cursor, new);
 return;
 }
 else{
 insert(&(*cursor)->next, new);
 }
}

What if not empty?

Mary 1987

Alex 1988

headptr

NULL

If first item is bigger than new node
still add at head!

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find the its insertion point?

29

void insert(node **cursor, node *new){
 if ((*cursor == NULL) ||
 (*cursor)->byear>=new->byear){
 add_at_head(cursor, new);
 return;
 }
 else{
 insert(&(*cursor)->next, new);
 }
}

What if not empty?

Mary 1987

Alex 1988

headptr

NULL

If first item is bigger than new node
still add at head!

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find the its insertion point?

30

void insert(node **cursor, node *new){
 if ((*cursor == NULL) ||
 (*cursor)->byear>=new->byear){
 add_at_head(cursor, new);
 return;
 }
 else{
 insert(&(*cursor)->next, new);
 }
}

Alex 1988

headptr

John 1986

Mary 1987

NULL

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find the its insertion point?

30

void insert(node **cursor, node *new){
 if ((*cursor == NULL) ||
 (*cursor)->byear>=new->byear){
 add_at_head(cursor, new);
 return;
 }
 else{
 insert(&(*cursor)->next, new);
 }
}

Alex 1988

headptr

John 1986

General case: if list is not empty
and first item is smaller than
new, update pointer & recurse!

Mary 1987

NULL

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Insertion in a sorted linked list
• Suppose our linked list is

already sorted by birth year.

Give a new node, how to
find the its insertion point?

30

void insert(node **cursor, node *new){
 if ((*cursor == NULL) ||
 (*cursor)->byear>=new->byear){
 add_at_head(cursor, new);
 return;
 }
 else{
 insert(&(*cursor)->next, new);
 }
}

Alex 1988

headptr

John 1986

General case: if list is not empty
and first item is smaller than
new, update pointer & recurse!

Mary 1987

NULL

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deletion

31

int delete_node(node **headptr, char *name){
 node *prev;
 node *current = *headptr;

 while (current!=NULL){
 if (strcmp(current->name, name)==0)
 break;
 prev = current;
 current = current->next;
 }
 if (current==NULL)
 return -1;

 if (current == *headptr)
 *headptr = current->next;
 else
 prev->next=current->next;
 free(current);
 return 0;
}

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deletion
• To delete a node we have to

specify it by some identifying
quantity.

31

int delete_node(node **headptr, char *name){
 node *prev;
 node *current = *headptr;

 while (current!=NULL){
 if (strcmp(current->name, name)==0)
 break;
 prev = current;
 current = current->next;
 }
 if (current==NULL)
 return -1;

 if (current == *headptr)
 *headptr = current->next;
 else
 prev->next=current->next;
 free(current);
 return 0;
}

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deletion
• To delete a node we have to

specify it by some identifying
quantity.

• Then we traverse/search
through the list. Cases are:

31

int delete_node(node **headptr, char *name){
 node *prev;
 node *current = *headptr;

 while (current!=NULL){
 if (strcmp(current->name, name)==0)
 break;
 prev = current;
 current = current->next;
 }
 if (current==NULL)
 return -1;

 if (current == *headptr)
 *headptr = current->next;
 else
 prev->next=current->next;
 free(current);
 return 0;
}

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deletion
• To delete a node we have to

specify it by some identifying
quantity.

• Then we traverse/search
through the list. Cases are:

• Item not found

31

int delete_node(node **headptr, char *name){
 node *prev;
 node *current = *headptr;

 while (current!=NULL){
 if (strcmp(current->name, name)==0)
 break;
 prev = current;
 current = current->next;
 }
 if (current==NULL)
 return -1;

 if (current == *headptr)
 *headptr = current->next;
 else
 prev->next=current->next;
 free(current);
 return 0;
}

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deletion
• To delete a node we have to

specify it by some identifying
quantity.

• Then we traverse/search
through the list. Cases are:

• Item not found

• Item found at head

31

int delete_node(node **headptr, char *name){
 node *prev;
 node *current = *headptr;

 while (current!=NULL){
 if (strcmp(current->name, name)==0)
 break;
 prev = current;
 current = current->next;
 }
 if (current==NULL)
 return -1;

 if (current == *headptr)
 *headptr = current->next;
 else
 prev->next=current->next;
 free(current);
 return 0;
}

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Deletion
• To delete a node we have to

specify it by some identifying
quantity.

• Then we traverse/search
through the list. Cases are:

• Item not found

• Item found at head

• Item found elsewhere

31

int delete_node(node **headptr, char *name){
 node *prev;
 node *current = *headptr;

 while (current!=NULL){
 if (strcmp(current->name, name)==0)
 break;
 prev = current;
 current = current->next;
 }
 if (current==NULL)
 return -1;

 if (current == *headptr)
 *headptr = current->next;
 else
 prev->next=current->next;
 free(current);
 return 0;
}

• Inserting an item in the list

• Unsorted list: Can insert at head or at

tail

• Sorted list: Insert so as to maintain

sorted property

• Traversing the list

• Deleting an item from the list

• Delete from head, tail or middle.

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Search

32

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Search

• Left as an exercise … should be easy enough now that you have
seen how to look for, find and then delete a node!

32

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Search

• Left as an exercise … should be easy enough now that you have
seen how to look for, find and then delete a node!

• Note: When an element is found, there is no index to return; so
what should the search function do?

32

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Search

• Left as an exercise … should be easy enough now that you have
seen how to look for, find and then delete a node!

• Note: When an element is found, there is no index to return; so
what should the search function do?

• What to return when element is not found in list?

32

