ECE 220

Lecture x0010 - 10/21
Dynamic Memory Allocation

Slides based on material originally by: Yuting Chen & Thomas Moon

ECE 220 - Fall 2025 ILLINOIS

Announcements

e Final exam schedule is now available

e DRES-TAC reservation deadline is November 1.
e Midterm 2 will be held on 10/30
* Practice material is posted

 Check HKN website: https://hkn.illinois.edu/services for review
session

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

https://hkn.illinois.edu/services

Recap

e | ast few weeks Pointers to structs
e Streams, buffers, queue e Structs within structs
(FIFO)
* Passing structs in
e File I/0O, formatted IO functions
o Structs * Writing structs to files
* Arrays of structs Examples

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Other user defined types: enums

 Enum is short for enumeration. ldea is to assign meaningful names
to integers for code readability.

e Syntax: enum [tag] {enumerator list};

enum weekday {SUN, MON, TUE, WED, THR, FRI, SAT};

int 1s workday(enum weekday day) {
(day>SUN && day<SAT)
return 1;
else
return O0;

Find out: Can you override default values assigned to enums?

ECE 220 - Fall 2025 ILLINOIS

Other user defined types: enums

enum weekday {SUN, MON, TUE, WED, THR, FRI, SAT};

int is workday(enum weekday day){
(day>SUN && day<SAT)
return 1;
else
return 0;

int main(void) {

enum weekday today=THR;
enum weekday day after next = today+2;

printf("Today is day #%d of the week.\n", today);
printf("Today is %s\n", is workday(today) ? "a workday" : "not a workday");

printf("\n");
printf("Day after tomorrow is day #%d of the week.\n", day after next);
printf("That day is %s\n",

1s workday(day after next) ? "a workday" : "not a workday");

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Lesson objectives

 Understand difference betwen dynamically allocated and
automatically allocated memory.

 Understand heap

 |Learn and be able to use malloc family of functions and know the
differences between them.

 Understand lack of garbage-collection in C and what that implies
for the programmer.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Dynamic memory allocation

 We specify numplanes to use fread and allocate F1light array
of size 50.

* |f usually only ~5 flights, then memory is wasted.
* |f weread in a large file >50 then not enough memory is allocated.

 May only know numplanes at runtime!

* |deally, we want to allocate as much memory as needed rather than
a pre-set amount.

* |In most cases, this memory comes from an area of the architecture
called the heap.

UNIVERS ITY OF

ILLINOIS

ECE 220 - Fall 2025

Dynamic memory allocation

xC0O0C

System space

* During the execution, a program makes a -

Program text

request to the memory allocator for a .
contiguous piece of memory of a particular

S i Ze (for dynamically allocated memory)

* The allocator reserves the memory and !
returns a pointer to it. We interact with the

memory allocation manager by using malloc T
family & free functions. o - R (rame paner

System space

XFFFF

ILLINOIS

ECE 220 - Fall 2025

Automatic vs. dynamic memory

xC000
System space
Automatic Dynamic
< - PC
Program text
< R4
. . . Global data section
Mechanism Automatic Use malloc family
Heap
(for dynamically allocated memory)
Compiler makes decisions; Programmer makes
Lifetime variables “die” when functions decision, must use
& blocks end free () to deallocate
Location Stack or global data area Heap T
<+ - RE (Stack painter)
<+ - RS (Frame pointer)
Run-time stack
Fixed Adjustable
System space
xFFFF

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

The malloc function

vold *malloc(size t size)

 Parameters
 size: Number of bytes to allocate

e size t: Atype defined in the user library ~ unsigned integer

* Return value: NULL (failure) or pointer to beginning of allocated
block (success).

htitps://en.cppreference.com/w/c/memory/malloc

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

http://en.cppreference.com/w/c/types/size_t
https://en.cppreference.com/w/c/memory/malloc

Using malloc

 Memory allocated by malloc is not initialized (there could be
garbage values or leftover values).

e Jousemalloc, we need to know how many bytes to allocate. The
sizeof operator asks the compiler to calculate the size of a

particular type.

* We also need to change the type of the return value to the proper
kind of pointer- this is called “casting”.

malloc returns void pointer

Standard pointer |. _ : : :
declaration ‘1nt *ptr‘ = (1nt *) malloc(sizeof(int));

Juxtaposition with (int *) casts the void pointer as an int pointer

ILLINOIS

ECE 220 - Fall 2025

The free function

vold free(void *ptr)

e Parameters

e *ptr: Pointer to beginning of block to be deallocated. Should
have been generated by the malloc family.

« Memory allocated via malloc must be deallocated via free or
reallocated via realloc to prevent memory leaks!

 Use valgrind to check for memory leaks

https://valgrind.orqg/

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

The calloc function

voilid *calloc(size t n items, size t i1tem size)

e Parameters
e size: Number of items to be allocated

» item size: Size of each item

 Return value: NULL (failure) or pointer to beginning of allocated
block (success).

e |dentical to malloc, except calloc Initializes memory to zero.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

http://en.cppreference.com/w/c/types/size_t
http://en.cppreference.com/w/c/types/size_t

The realloc function

vold *realloc(volid *ptr, size t size)

 Parameters
 ptr: Pointer to memory block to be reallocated

e size: New size of block

* Return value: NULL (failure) or pointer to beginning of allocated
block (success).

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

http://en.cppreference.com/w/c/types/size_t

void *malloc(size t size) volid free(void *ptr)

The realloc function

vold *realloc(volid *ptr, size t size)

* The content of the memory block is preserved, even if the block is
moved to a new location (if the new size is larger than the old size,
the added memory will not be initialized).

e If ptris NULL, it is same as malloc
e If sizeis 0 and ptr is not NULL, implementation dependent!

 ptr must have been returned by the malloc family

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

http://en.cppreference.com/w/c/types/size_t
http://en.cppreference.com/w/c/types/size_t

Example of malloc & free

e Casting:

int *ptr = (int *) malloc(sizeof(int));
Flight *ptr = (Flight *) malloc(numFlight*sizeof(Flight));

 Why: recall C is statically typed; so compiler needs to know what
type to assign to allocated memory locations.

o Sorta-kinda a fib (C can tell by looking at LHS, but C++ won’t)

* Types can be built-in or user-defined.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Example of malloc & free

int main(){
int *ptrl = (int *) malloc(sizeof(int));

1f(ptrl==NULL) {
printf("Error - malloc failure\n");

return -1;

}

*ptrl = 10;

int *ptr2 = (int *) malloc(sizeof(int));
*ptr2 = 5;

What is wrong with this code?

Didn’t free memory allocated!

ILLINOIS

ECE 220 - Fall 2025

Example of malloc & free

int main(){
int *ptrl = (int *) malloc(sizeof(int));
if (ptrl==NULL){
printf ("Error - malloc failure\n");
return -1;

}

*ptrl = 10;

int *ptr2 = (int *) malloc(sizeof(int));

*ptr2 = 5;

ptrl = ptr2; <« S

free(ptrl); - wap This one frees the memory, but
tree(ptrz); has a bug. What should we do?

ECE 220 - Fall 2025 ILLINOIS

Example of realloc

int *ptr;
int *ptr new;

/* What does this code do? */
ptr = (int *) calloc(2, sizeof(int));

*ptr = 10;

/* What is the contents of memory now? */

ptr new = (int *) realloc(ptr, 4*sizeof(int));
*(ptr new+2) = 30;
*(ptr new+3) = 40;

/* How much memory are we deallocating here? */
free(ptr new);

Do we need free(ptr)?

ECE 220 - Fall 2025 ILLINOIS

Allocating 2D arrays

* Here is one method of allocating 2D arrays:

FILE *infile = fopen("mat.csv", "r");
int nr, nc;

fscanf(infile, "%d, %d", &nr, &nc);
int *mat = (int *) malloc(sizeof(int)*nr#*nc);

for (int i=0; i < nr; i++)
(int J=0; Jj< nc; J++)

fscanf(infile, "%d, ", &mat[i*nc+j]);

fclose(infile);

ECE 220 - Fall 2025 ILLINOIS

Allocating 2D arrays - another way

int X

 Recall pointers to pointers? x1234
int *p

int x = 10; x5678 | x1234

int *p = &x;

int **pp = &p; [int **pp
x5678

xABCD

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Allocating 2D arrays - another way

* Recall pointers to pointers?

e \We can use that:

int **array;

array = (int**) malloc(nrows*sizeof(int#*));
(1=0;1<nrows;i++)
array[1] = (int?*) malloc(ncols*sizeof(int));
array[0][0] = 3;

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Allocating 2D arrays - another way

int **array;

array = (i1nt**) malloc(nrows*sizeof(int¥*));
(1=0;1<nrows; i++)
array[1] = (int*) malloc(ncols*sizeof(int));
array[0][0] = 3;

array _

Nrows

ncols

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Pointer to pointer - caveat

* How do you deallocate a 2D array?

« Method 1: Free the single pointer: int * mat

« Method 2: Need to free each pointer separately!!

* Not enough to free the top level pointer (int **array)

 Unless made free, lower level pointers (int *) will leak
memory!

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Example with valgrind

#include <stdio.h>

#include <stdlib.h> Get on to EWS. Compile
the standard way. Then
int main(void) { _
char *p; run.
/* Allocation #1 of 19 bytes */ > valgrind ./a.out

p = (char *) malloc(19);
. :
/* Allocation #2 of 12 bytes */ Can you flgure out where

free(p);

/* Allocation #3 of 16 bytes */
p = (char *) malloc(1l6);

return O;

ECE 220 - Fall 2025 ILLINOIS

Exercise

* Use this second method of memory allocation for 2D arrays
(pointer of pointers) to read in a given file (matrix.csv) and print

out its transpose.

e The first row of the file lists the number of rows and columns of the
mautrix.

UNIVERSITY OF

ILLINOIS

ECE 220 - Fall 2025

Introduced in C99, discarded/relegated in C11 — modern compilers not required to support it!

Aside: Variable Length Arrays

* You could still define an array size void fun(int n)
using user input. {
int arr[n];

* Array still allocated on the stack /* More code follows

 Mechanism is far more

complicated }*/

» Still cannot modify size after int main()

definition fun(6) :

}

* We pay that performance overhead
for convenience

ECE 220 - Fall 2025 ILLINOIS

Exercise - do it yourself

e Recall how to use malloc for our struct

Flight *ptr = (Flight *) malloc(numFlight*sizeof(Flight));

* Write a function to read the provided binary file and return a struct
containing the n-th flight record. Discard the first n-1.

Flight * nth flight(char *filename, int num total, int N)

 Make sure to free memory!

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Next time - important

e So far our use of malloc has been to load records or data from a
file

 Thus we no longer have to know the sizes at compile time

* Nevertheless realloc/malloc/free Is cumbersome to keep
using

* Need a data structure that takes care of this automatically -
enter linked-lists.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Time permitting - key idea

e Basic idea of a linked list:

typedef struct node{
char *name;
struct node * next;
}node;

e Definition Is recursive; a node Is
either

e NULL or

e Contains a reference to another
node

ECE 220 - Fall 2025 ILLINOIS

