ECE 220

Lecture xO00F - 10/16

ECE 220 - Fall 2025



Recap/reminders

e | asttime e Reminders
e Streams & buffers e This lecture concludes the
material for MT2
e Filel/O
 Class drop-deadline is
e Formatted I/0O tomorrow
 Examples * Conflict sign-up link is live

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS



Exercise

* Write a function to transpose a 4 3
given TSV file and write the zariski 99 Monday
output to transposed.tsv Newton 43 Sunday

Russel 72 Saturday
Maxwell 32 Wednesday
 The number of rows and

columns will be present as
the first line of the input file:
records.tsv

3 4
Zariski Newton Russel Maxwell
* TSV stands for Tab- 09 43 72 32

Separated-Values. Monday  Sunday Saturday Wednesday

ECE 220 - Fall 2025 See Github for answers after lecture ILLINOIS



Exercise

« How about comma-separated values? Let us transpose a matrix
stored on disk and write it back to disk.

 The input matrix is in file mat . csv with the first line specifying the
number of rows and columns in the matrix.

* Write output to file t mat.csv.

UNIVERSITY OF

See Github for answers after lecture ILLINOIS

ECE 220 - Fall 2025 4



Lesson Objectives

e Understand and use structs in C.

* Definition, initialization, direct access, pointer-based access,
and passing to and from functions.

 Understand how structs are laid out linearly in memory (using the
LC3 memory map.

* Understand the concept of type definition.

* Write and read structs as binary files to disk.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS



Introduction to structs

» Often useful to the programmer to combine pieces of information
into a single abstract unit

 Example(s)

o A student could have a name (char[801]), UIN (unsigned
long int), year (unsigned int)and GPA (float)

e A flight could have an altitude (unsigned int), latitude
(float), longitude (f1loat), airspeed (f1loat) and airline code
(char[20])

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS



Introduction to structs

* Achieved by letting the programmer create their own data type
using the struct keyword.

 Examples (definition):

struct f£lightType{
char f£lightCode[20];
unsigned int altitude;

struct student({
char name[80];

uHS}gnij }Zzg Uiif float longitude;
unsign 1 yeary float latitude;
float GPA;

. float airSpeed;
’ }i

ECE 220 - Fall 2025 ILLINOIS



Defining structs

struct flightType( e A struct allows the user to
char tlightCode[20]; define a new data type that
unsigned 1int altitude; ; th + £ 1
float longitude: groups together | ems of types
float latitude: that are already defined.
unsigned float airSpeed;

bi » « Defining a struct tells the

compiler

However ... no memory * How big the struct is ...

allocated yet! | |
* How to lay items out In

memory ...

ECE 220 - Fall 2025 ILLINOIS



struct f£lightType({ struct student{

char flightCode[20]; char name[80];
unsigned int altitude; unsigned long UIN;
float longitude; unsigned int year;
float latitude; float GPA;

unsigned float airSpeed;

Using structs

 Memory is only allocated when ¢ struct variables can also be
variables are created using the initialized at declaration.
newly defined type.

struct student sl = {“Garfield”,

struct flightType plane; 123456, 6, 3.5};

struct student sl;
* Also possible to create arrays of

e Elements of a struct are called structs
its memberg. Members can be struct student BL3[2] = {sl,
accused using the “dot” {"Scooby", 234578164, 2, 4.0}};
notation. printf(“Name is %s”, BL3[1l].name);
plane.altitude = 1000;

plane.airspeed 800.0;

ECE 220 - Fall 2025 ILLINOIS



Memory mapping

« How many bytes of memory
should one instance of . 1 o
s1.name
student take?
a s1.name([1]
struct student({
char name[80];
unsigned long UIN;
unsigned int year; s1.name[/8]
) float GPA; . s1.name[79]
123456 s1.UIN
struct student sl =
{“Garfield”, 123456, 6, 3.5} 6 s1.year
3.5 s1.gpa

80+8+4+4

ECE 220 - Fall 2025 ILLINOIS



Memory mapping

 What if we change the definition

to this one?
8074+8+4+4="7

struct student({
char name[74];

unsigned long UIN; Let us check using
unsigned int year; sizeof function.
float GPA;

i
What happened?

Compilers will often perform “padding” to align memory.

Use the sizeof operator to get accurate results!

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS



https://en.cppreference.com/w/c/language/object#Alignment

Why padding is done?

 Compilers prefer to align memory to make operations faster.
* Memory typically has an access granularity.
* Suppose we have 4 byte memory access granularity.

 Task: Read 4 bytes from address x01

Thus, operations will be
faster if memory is

aligned.

x00 Read high bytes x00 o 9

x01 & = x02 |
X0 g \

x02 o > x03 | x0T
x02 03 < x02
03 X Combine 03

| | X
x04 \ x04 c x04
05 © 3 |

X x05 £ S
x06 x06 5 &
x07 Read low bytes x07 %

ECE 220 - Fall 2025

Advanced Topic

ILLINOIS


https://en.cppreference.com/w/c/language/object#Alignment

The typedef keyword

e Note how we declared a struct

variable: typedef Strl.J.Ct flightType(
char flightCode[20];
struct flightType plane; unsigned int altitude;
struct student sl; float longitude;

float latitude;

. Annoying to keep having to say unsigned float alrSpeed;

} Flight;
struct xyz, struct abc -
more so in the context of function Flight f1 = {“AA 4324",
calls 33000,
87.6,
. . . 41.8,
* C provides a mechanism to avoid 700} »

this verbosity.

ECE 220 - Fall 2025 ILLINOIS



Pointers to structs

 One can define pointers * To access struct elements via
to structs the usual way. pointers you can

Flight planes[100];  Dereference and dot
Flight *ptrl;
ptrl = &planes[10];
Flight *ptr2;
ptr2 = planes;

printf(“I am %f feet high”,
(*ptrl).altitude);

e Arrow

Special syntax! < printf(“I am %f feet high”,
ptrl->altitude);

ECE 220 - Fall 2025 ILLINOIS



Passing structs as arguments

* One can write function definitions involving using structs in either
way:

void print student(struct student s){
printf("Student %s is associated with UIN: %lu\n", s.name, s.UIN);
printf("%s is in Year %d with GPA %f\n", s.name, s.year, s.GPA);

}

volid print flight(Flight f){
printf("Flight #%s is at altitude %u\n", f.flightCode, f.altitude);
printf("%s has speed %f\n", f.flightCode, f.airSpeed);

}

ECE 220 - Fall 2025 ILLINOIS



Passing structs as arguments

 We could also pass the struct via reference:

void print flight loc(Flight *f){
printf("Flight #%s is at altitude %u\n", f->flightCode, f->altitude);
printf("%s has lattitude: %$f\n", f->flightCode, f->latitude);
printf("%s has longitude: %$f\n", f->flightCode, f->longitude);

}

 Which is cheaper in terms of memory/run-time stack?

 What if we had an array of structs?

ECE 220 - Fall 2025 ILLINOIS



Structs within structs

* Nothing stops us from creating * Then we can do:

a struct composed of structs. typedef struct flight{

char code[8];

Suppose we have: unSJ:.gned J:.nt arrival_{:ime;
unsigned i1nt depart time;
struct geoloc{ struct geoloc origin;
float lattitude; struct geoloc destination;
float longitude; } Flight;
i

ECE 220 - Fall 2025

ILLINOIS



Example: Airport management

* Writing a struct to a file:

fwrite(void *ptr, size, n memb, FILE *stream)

e ptr IS pointer to instance of the struct to write
 size Is the size in bytes of each element to be written (use sizeof)

* n memb IS the number of items to write, each with size of size
bytes

e stream is the pointer to FILE object in binary write mode.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS



Example: Airport management

* Writing a struct to a file:

fread(void *ptr, size, n memb, FILE *stream)

e ptr Is pointer to instance of the struct to hold data
 size Is the size in bytes of each element to be read (use sizeof)

 n memb IS the number of items to read, each with size of size
bytes

e stream is the pointer to FILE object in binary read mode.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS



Exercise

* In a C file, use a loop and have the struct geoloc{
_ i float lattitude;
user input three records of the Flight float longitude:
struct. }i
* Write this data to disk using fwrite. typedef struct flight{
char code[8];
_ unsigned int arrival time;
e |n another C file, read the data back to unsigned int depart time;
an array of Flight using fread. struct geoloc origin;
struct geoloc destination;
} Flight;

ECE 220 - Fall 2025 ILLINOIS



Other user defined types: enums

 Enum is short for enumeration. ldea is to assign meaningful names
to integers for code readability.

e Syntax: enum [tag] {enumerator list};

enum weekday {SUN, MON, TUE, WED, THR, FRI, SAT};

int 1s workday(enum weekday day) {
(day>SUN && day<SAT)
return 1;
else
return O0;

Find out: Can you override default values assigned to enums?

ECE 220 - Fall 2025 ILLINOIS



Other user defined types: enums

int main(void) {

enum weekday today=THR;
enum weekday day after next = today+2;

printf("Today is day #%d of the week.\n", today);
printf("Today is %s\n", is workday(today) ? "a workday" : "not a workday");

printf("\n");
printf("Day after tomorrow is day #%d of the week.\n", day after next);
printf("That day is %s\n",

1s workday(day after next) ? "a workday" : "not a workday");

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS



