
 ECE 220 - Fall 2025 Dr. Ivan Abraham

ECE 220
Lecture x000F - 10/16

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Recap/reminders
• Last time

• Streams & buffers

• File I/O

• Formatted I/O

• Examples

• Reminders

• This lecture concludes the
material for MT2

• Class drop-deadline is
tomorrow

• Conflict sign-up link is live

2

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Exercise
• Write a function to transpose a

given TSV file and write the
output to transposed.tsv

• The number of rows and
columns will be present as
the first line of the input file:
records.tsv

• TSV stands for Tab-
Separated-Values.

3

4 3
Zariski 99 Monday
Newton 43 Sunday
Russel 72 Saturday
Maxwell 32 Wednesday

See Github for answers after lecture

3 4
Zariski Newton Russel Maxwell
99 43 72 32
Monday Sunday Saturday Wednesday

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Exercise

• How about comma-separated values? Let us transpose a matrix
stored on disk and write it back to disk.

• The input matrix is in file mat.csv with the first line specifying the
number of rows and columns in the matrix.

• Write output to file t_mat.csv.

4 See Github for answers after lecture

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Lesson Objectives
• Understand and use structs in C.

• Definition, initialization, direct access, pointer-based access,
and passing to and from functions.

• Understand how structs are laid out linearly in memory (using the
LC3 memory map.

• Understand the concept of type definition.

• Write and read structs as binary files to disk.

5

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Introduction to structs
• Often useful to the programmer to combine pieces of information

into a single abstract unit

• Example(s)

• A student could have a name (char[80]), UIN (unsigned
long int), year (unsigned int) and GPA (float)

• A flight could have an altitude (unsigned int), latitude
(float), longitude (float), airspeed (float) and airline code
(char[20])

6

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Introduction to structs
• Achieved by letting the programmer create their own data type

using the struct keyword.

• Examples (definition):

7

struct flightType{
 char flightCode[20];
 unsigned int altitude;
 float longitude;
 float latitude;
 float airSpeed;
};

struct student{
 char name[80];
 unsigned long UIN;
 unsigned int year;
 float GPA;
};

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Defining structs
• A struct allows the user to

define a new data type that
groups together items of types
that are already defined.

• Defining a struct tells the
compiler

• How big the struct is …

• How to lay items out in
memory …

8

struct flightType{
 char flightCode[20];
 unsigned int altitude;
 float longitude;
 float latitude;
 unsigned float airSpeed;
};

However … no memory
allocated yet!

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Using structs
• Memory is only allocated when

variables are created using the
newly defined type.

struct flightType plane;
struct student s1;

• Elements of a struct are called
its members. Members can be
accused using the “dot”
notation.

plane.altitude = 1000;
plane.airspeed = 800.0;

9

• struct variables can also be
initialized at declaration.

struct student s1 = {“Garfield”,
123456, 6, 3.5};

• Also possible to create arrays of
structs

 struct student BL3[2] = {s1,
 {"Scooby", 234578164, 2, 4.0}};
printf(“Name is %s”, BL3[1].name);

struct flightType{
 char flightCode[20];
 unsigned int altitude;
 float longitude;
 float latitude;
 unsigned float airSpeed;
};

struct student{
 char name[80];
 unsigned long UIN;
 unsigned int year;
 float GPA;
};

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Memory mapping
• How many bytes of memory

should one instance of
student take?

struct student{
 char name[80];
 unsigned long UIN;
 unsigned int year;
 float GPA;
};

struct student s1 =
{“Garfield”, 123456, 6, 3.5}

10

…

G s1.name[0]

a s1.name[1]

… …

… s1.name[78]

… s1.name[79]

123456 s1.UIN

6 s1.year

3.5 s1.gpa

80 + 8 + 4 + 4

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Memory mapping

11

Compilers will often perform “padding” to align memory.

Use the sizeof operator to get accurate results!

• What if we change the definition
to this one?

struct student{
 char name[74];
 unsigned long UIN;
 unsigned int year;
 float GPA;
};

80 74 + 8 + 4 + 4 = ?

Let us check using
sizeof function.

What happened?

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Why padding is done?
• Compilers prefer to align memory to make operations faster.

• Memory typically has an access granularity.

• Suppose we have 4 byte memory access granularity.

• Task: Read 4 bytes from address x01

12 Advanced Topic

x00
x01

x02
x03
x04
x05
x06
x07

x00
x01

x02
x03

x04
x05
x06
x07 x04

Sh
ift

 3

by
te

s
do

w
n

x01
x02

x03Sh

ift
 1

by

te
 u

pRead high bytes

Read low bytes

Combine

x01
x02

x03
x04

Thus, operations will be
faster if memory is

aligned.

https://en.cppreference.com/w/c/language/object#Alignment

https://en.cppreference.com/w/c/language/object#Alignment

 ECE 220 - Fall 2025 Dr. Ivan Abraham

The typedef keyword
• Note how we declared a struct

variable:

struct flightType plane;
struct student s1;

• Annoying to keep having to say
struct xyz, struct abc -
more so in the context of function
calls

• C provides a mechanism to avoid
this verbosity.

13

typedef struct flightType{
 char flightCode[20];
 unsigned int altitude;
 float longitude;
 float latitude;
 unsigned float airSpeed;
} Flight;

Flight f1 = {“AA 4324”,
 33000,

 87.6,
 41.8,
 700};

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Pointers to structs
• One can define pointers

to structs the usual way.

14

Flight planes[100];
Flight *ptr1;
ptr1 = &planes[10];
Flight *ptr2;
ptr2 = planes;

• To access struct elements via
pointers you can

• Dereference and dot

printf(“I am %f feet high”,
 (*ptr1).altitude);

• Arrow

printf(“I am %f feet high”,
 ptr1->altitude);

Special syntax!

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Passing structs as arguments
• One can write function definitions involving using structs in either

way:

15

void print_student(struct student s){
 printf("Student %s is associated with UIN: %lu\n", s.name, s.UIN);
 printf("%s is in Year %d with GPA %f\n", s.name, s.year, s.GPA);
}

void print_flight(Flight f){
 printf("Flight #%s is at altitude %u\n", f.flightCode, f.altitude);
 printf("%s has speed %f\n", f.flightCode, f.airSpeed);
}

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Passing structs as arguments
• We could also pass the struct via reference:

16

void print_flight_loc(Flight *f){
 printf("Flight #%s is at altitude %u\n", f->flightCode, f->altitude);
 printf("%s has lattitude: %f\n", f->flightCode, f->latitude);
 printf("%s has longitude: %f\n", f->flightCode, f->longitude);
}

• Which is cheaper in terms of memory/run-time stack?

• What if we had an array of structs?

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Structs within structs
• Nothing stops us from creating

a struct composed of structs.

Suppose we have:

struct geoloc{
 float lattitude;
 float longitude;
};

17

• Then we can do:

typedef struct flight{
 char code[8];
 unsigned int arrival_time;
 unsigned int depart_time;
 struct geoloc origin;
 struct geoloc destination;
} Flight;

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Example: Airport management
• Writing a struct to a file:

fwrite(void *ptr, size, n_memb, FILE *stream)

• ptr is pointer to instance of the struct to write

• size is the size in bytes of each element to be written (use sizeof)

• n_memb is the number of items to write, each with size of size

bytes

• stream is the pointer to FILE object in binary write mode.

18

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Example: Airport management
• Writing a struct to a file:

fread(void *ptr, size, n_memb, FILE *stream)

• ptr is pointer to instance of the struct to hold data
• size is the size in bytes of each element to be read (use sizeof)

• n_memb is the number of items to read, each with size of size

bytes

• stream is the pointer to FILE object in binary read mode.

19

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Exercise

• In a C file, use a loop and have the
user input three records of the Flight
struct.

• Write this data to disk using fwrite.

• In another C file, read the data back to
an array of Flight using fread.

20

struct geoloc{
 float lattitude;
 float longitude;
};

typedef struct flight{
 char code[8];
 unsigned int arrival_time;
 unsigned int depart_time;
 struct geoloc origin;
 struct geoloc destination;
} Flight;

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Other user defined types: enums

• Enum is short for enumeration. Idea is to assign meaningful names
to integers for code readability.

• Syntax: enum [tag] {enumerator list};

enum weekday {SUN, MON, TUE, WED, THR, FRI, SAT};

int is_workday(enum weekday day){
 if (day>SUN && day<SAT)
 return 1;
 else
 return 0;
}

21

Find out: Can you override default values assigned to enums?

 ECE 220 - Fall 2025 Dr. Ivan Abraham

Other user defined types: enums

22

int main(void){

 enum weekday today=THR;
 enum weekday day_after_next = today+2;

 printf("Today is day #%d of the week.\n", today);
 printf("Today is %s\n", is_workday(today) ? "a workday" : "not a workday");

 printf("\n");
 printf("Day after tomorrow is day #%d of the week.\n", day_after_next);
 printf("That day is %s\n",
 is_workday(day_after_next) ? "a workday" : "not a workday");
}

