ECE 220

Lecture x000D - 10/09

ECE 220 - Fall 2025

Recap

 Formal introduction to * Today: More recursion &
recursion problem solving
* Factorial * N - Queens problem
e Binary search Maze solving
 Towers of Hanol * Exercise(s)

 |LC3 implementation

ECE 220 - Fall 2025 ILLINOIS

A

Lesson objectives

* Understanding recursion vs. iteration tradeoff
* Introduce memoization as a speedup technigue

* Use recursion with backtracking to produce elegant solutions to
problems

 Be able to implement recursion with bactracking to solve puzzles,
problems, etc.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

READ: Section 8.3 of Textbook

Good recursion vs. bad recursion

e Consider the recursive Fibonacci function from last time.

long long fib(long long n){ o Let,S dO an aCtiVity
long long sum;
* Convert this function to an

if (n == 0 || n == 1) _ _ ,
iterative version.

return 1;

else {

sum = (fib(n-1) + fib(n-2)); * Gompare run times.

return sum;

} » Can recursion be made
faster?

ECE 220 - Fall 2025 ILLINOIS

READ: Section 17.7 of Textbook

Solving a maze

« We represent a maze by a 2D grid of size N X M

e Walls are marked with X and the exit with E.

 Given starting point (i,) marked with @, find a path to E (if it exists).

Do not go outside grid

X X
* Avoid going around in circles.
X @ X
 Mark valid path with P. y
* Write a recursive function int ExitMaze solving problem. E X

ECE 220 - Fall 2025 ILLINOIS

Solving a maze

Strategy: Mark current cell as visited and explore solution space.
Exploration defined by four possible moves (U, D, L, R).

X X X X X X X X X X
X @ X X V X X YV X <+<V—X XV« X
X X 4 X X
E X E X E X E X E X
X X X X X X X X X X
A VYV X XV VX XV VvV X XV V X Xy X
;\/X V- X X /K lX
X E X E X E X E X

ECE 220 - Fall 2025 ILLINOIS

Solving a maze

e Recursion needs base case. What should be the base case?

 Found exit (return “good”) OR hit X or hit V or out-of-bounds
(return “bad”)

 Let xpos and ypos be the row and column index.

if (xpos < 0 || xpos >= MAZE HEIGHT || ypos < 0 || ypos >= MAZE WIDTH)
return O0;

if (maze[xpos][ypos] == 'E') // Found the Exit!
return 1;

if (maze[xpos][ypos] != ' ") // Space is not empty (possibly X or V)
return O0;

ECE 220 - Fall 2025 ILLINOIS

A

Solving a maze

 \What should be the recursive call?
 Go down, up, left or right.
e 1nt ExitMaze(maze, XposS, YpoOs)

e Function exploring the solution space.

// Go Down // Go Up
(ExitMaze(maze, xXpos + 1, ypos)) { (ExitMaze(maze, Xpos - 1, ypos)) {
maze[xpos][ypos]="'P'; maze[xpos][ypos]='P';
return 1; return 1;
} }
// Go Right // Go Left
(ExitMaze (maze, xXpos, ypos + 1)) { (ExitMaze (maze, Xpos, ypos - 1)) {
maze[xpos][ypos]="'P'; maze[xpos][ypos]='P';
return 1; return 1;
} }

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Exercise

X X

e Thereis an ExitMaze function on X X
Github which | tested to work. @ X X X

X

 Modify it by adding amain X X X X

function, board definition and try it X E X
on this maze. X X X X X
X

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

N - Queens Problem

* |n chess, a Queen can attack another piece within its line of sight
as long as that piece is in the same: row, column or diagonal.

* Question: Given an N x N grid,

. . s it possible to place N
Queens in the grid so that no

two Queens can attack each
other ?

e Answer: Yes.

ECE 220 - Fall 2025 ILLINOIS

N - Queens Problem

 Here is a possible solution

for the 5 x 5 grid. n .

* Not unique . . o .
* Can we make the computer Q . .

solve it for any given N? . n .

» Solution: Recursion with . . Q

backtracking.

ECE 220 - Fall 2025 ILLINOIS

N - Queens Problem

 Here is a possible solution

for the 5 x 5 grid. . .
Q

 Not unique

 Can we make the computer . n

solve it for any given N? o .

e Solution: Recursion with . . Q

backtracking.

ECE 220 - Fall 2025 ILLINOIS

N - Queens Problem

 Back-tracking: Make a choice and search the solution space. If
solution space is empty, return and make a different choice.

Choice #1

Choice #1.1

Not a solution!

X

ECE 220 - Fall 2025 ILLINOIS

N - Queens Problem

 Back-tracking: Make a choice and search the solution space. If
solution space is empty, return and make a different choice.

Choice #1

Choice #1.2

ECE 220 - Fall 2025 ILLINOIS

C-AMAVFPALIGH

N - Queens Problem

 Back-tracking: Make a choice and search the solution space. If
solution space is empty, return and make a different choice.

Choice #1

N .

Q Choice #1.2

Not a solution!

. Choice #1.2.1

ECE 220 - Fall 2025 ILLINOIS

N - Queens Problem

 Back-tracking: Make a choice and search the solution space. If
solution space is empty, return and make a different choice.

Choice #2

Choice #2.1

ECE 220 - Fall 2025 ILLINOIS

C-AMAVFPALIGH

N - Queens Problem

 Back-tracking: Make a choice and search the solution space. If
solution space is empty, return and make a different choice.

Choice #2

Choice #2.1

Choice #2.1.1 Valid solution

Choice #2.1.1.1

ECE 220 - Fall 2025 ILLINOIS

C-AMAVFPALIGH

N - Queens implementation?

* Question: Can we set this up as a recursive problem?
 What is the action/sub-problem that we want to repeat?
— Placing a Queen in a row
* |f not successtul how do we backtrack?
— Undo placing a queen
« How do we know we have reached an end case?

— No more rows to fill.

ECE 220 - Fall 2025 ILLINOIS

N - Queens set-up?

* We represent the configuration space with a grid.

* We will denote with digit zero an empty spot (maybe safe or
unsafe, but its unoccupied).

* We will denote with the digit one a space occupied by a queen.

* We will fill in rows starting with the first row and proceeding
downward.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

N - Queens implementation

int is safe(int board[N][N], int rnum, int cnum); is_safe checks whether it
IS possible to place a queen

/*Function places a queen in row rnum */

int place queen(int board[N][N], int rnum){ on position (rnum, num)
() // Finished all rows , , ,
1; // Found a solution given the configuration of the
else{ ' '
// Iterate over possible columns board at .SOme glven. time. It
(int cnum=0; ; cnumt+) returns 1 if safe or O if unsafe
(1s safe(| |)==1){
board[rnum][cnum] = 1; // Place a queen there

// Update row number and recurse
(==1)

1;
// Hit a road block down the line place gueen fl”S the bOard
// Remove queen o : :
\ // Try next column along row with a valid solution and
} // For loop finished without hitting a return returns 1 or returns O |f no
// Solution doesn't exist. .
} solution found.

ECE 220 - Fall 2025 ILLINOIS

A

Is It safe/unsafe?

 On the N-th row when we place a queen on a square (i, j) what do
we need to check?

— Are we in the line of sight (LOS) for any previous Queen.

* We are in LOS if
 The column i contains any Queen OR
 The diagonals to the top-left of (i, j) contains a Queen OR
* The diagonals to the top-right of (i, j) contains a Queen

 What about diagonals to the bottom left or bottom right?

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Is It safe/unsafe?

int 1s safe(int board[N][N], int row, int col){

H B int i, 3i;
. . for (| |){ //Check along column
. . 1f (board[i][col]==1)
. . . return 0;
H B)
// Check diagonal to upper left
for (; 1>=0 && J>=0; 1i--, J--){
1f (board[i][]] == 1)
return 0;
}
// Check diagonal to upper right
for (i=row-1, j=col+l; ;) {
1f (board[i1][]]==1)
return 0;
}
return 1;

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Exercise for fun outside lecture

» Exercise for the curious/mighty/brave:

 Modify the source of queens.c so that it keeps a static
variable to keep track of the recursive calls.

e Varying N, generate a plot of N vs number of recursive calls. Try
N=4, 5, .., 15.What kind of growth is it?

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Exercise - practice, practice, p....

* You have a pile of wood sticks with 3 different lengths: 3, 7, and
10 feet. You want to connect them and make an X-feet long stick
using at most 10 sticks.

* To make a stick 33 feet long you can do:
e 4 x3F+3x7F
e 11 x3F X

* Use recursion with backtracking to find a solution

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

Exercise

#define N 10 // Number allowed
#define M 3 // Types of lengths

// Implement this function

// solution[N]: stores the solution

// idx: index for the solution matrix

// total: remaining length

int solve(int solution[N], int idx, int total);

const int set[M] = {3,7,10};

int main(){
int solution[N] = {0, O, O, O, O, O, O, O, O, 0};
int total;
printf("Enter total length: ");
scanf("%d", &total);
// Write your code here

UNIVERSITY Q=

ECE 220 - Fall 2025 ILLINOIS

Time permitting

* Using the gdb debugger with gdb dashboard.

UNIVERSITY OF

ECE 220 - Fall 2025 ILLINOIS

