
ECE 220 Computer Systems & Programming

Lecture 5 – Introduction to C

September 10, 2024

• Mock quiz (extra-credit) should be taken at CBTF by 9/11
• Quiz1 (LC-3 programming) is next Monday through Wednesday

C – Higher Level Language
(2023 top programming languages ranked by IEEE Spectrum)

Gives symbolic names to values

• don’t need to know which register or memory location

Provides abstraction of underlying hardware

• operations do not depend on instruction set

• example: can write “a = b * c;”, even though LC-3 doesn’t have a

multiply instruction

Provides expressiveness

• use meaningful symbols that convey meaning

• simple expressions for common control patterns (if-then-else)

Enhances code readability

Safeguards against bugs

• can enforce rules or conditions at compile-time or run-time

2

https://spectrum.ieee.org/the-top-programming-languages-2023

Basic C Program

a. Comment

b. Preprocessor directives

c. Main function

d. Variable declaration (type, identifier, scope)

e. I/O

f. Return value

g. Statement termination 3

/*

 * My first program in C. It will print the value of PI

 * and then exit.

 */

#include <stdio.h>

#define PI 3.1416f

int main(){

 float pi = PI;

 printf(“pi=%f\n”, pi);

 return 0;

}

Characteristics of C

C is a procedural language

• the program specifies an explicit sequence of steps to follow to produce a
result; program is composed of functions (aka subroutines)

C programs are compiled rather that interpreted

• a compiler translates a C program into machine code that is directly
executable on hardware

• interpreted programs (e.g. MATLAB) are executed by another program,
called interpreter

C programs are statically typed

• the type of each expression is checked at compile time for type
inconsistencies (e.g., int x = 3.411;)

➢ What is the value of x in this case?

4

Compiling a C Program

Preprocessor

• macro substitution

• conditional compilation

• “source-level” transformations

o output is still C

Compiler

• generates object file

o machine instructions

Linker

• combine object files
(including libraries)
into executable image

✓ gcc compiler – invoke all these tools

C

Source and

Header Files

C Preprocessor

Compiler

Source Code

Analysis

Target Code

Synthesis

Symbol Table

Linker

Executable

Image

Library

Object Files

5

Variables in C

• int (long, long long, unsigned), can also use hex representation 0xD

• float (double)

• char

❑ const - constant qualifier

❑ static - static qualifier

Storage class: static vs. automatic

Scope: local vs. global

6

Program Text

Global Data Section

Heap

Run-Time Stack

Operators

• Expression vs. Statement

• The Assignment Operator (=):

• ‘=‘ vs. ‘==‘

• Arithmetic Operators:

• Order of evaluation:

precedence x = 2+3*4;

associativity x = 2+3-4+5;

parentheses x = a*(b + c)*d/2;

• Logical Operators: __

• Bitwise Operators: __

• Relational Operators: __

7

Operators (continued)

• Increment/Decrement Operators: ++, -- (pre vs. post)

example 1: x = 4; y = ++x;

example 2: x = 4; y = x++;

➢ What is the value of x and y after increment?

• Special operator (conditional):

variable = condition ? value_if_true : value_if_false;

example: x = (y<z) ? 5 : 7

/* if y<z, x=____; otherwise, x=____ */

• Compound Assignment Operators:

 a += b; a = a + b;

❖ Expression with multiple operators → see Table 12.5 of textbook
8

Basic I/O

#include <stdio.h> /* header file for standard I/O */

printf

/*print to screen*/

scanf

/*get user input*/

• Formatting option: %d, %x, %c, %s, %f, %lf, \n

• Use “man” to look up library functions 9

C Programming Exercise 1

#include <stdio.h>

int main(){

/* declare integer variables x, y and z */

/* set x to 3, set y to x2 */

/* left shift y by x number of bits */

/* perform bitwise OR on x and y, store the result to z */

/* print z */

return 0;

} 10

C Programming Exercise 2

/*

 * Write a C program to convert Fahrenheit to Celsius.

 * C = (F-32)*5/9

 */

/* preprocessor directives */

int main(){

 /* declare variables (as float) for input and output */

 /* prompt user to enter an input value for conversion */

11

/* get user input in Fahrenheit */

 /* calculate the output value in Celsius */

 /* print the result */

 /* return out */

}

12

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

