
ECE 220 Computer Systems & Programming

Lecture 4 – Programming with Stack

September 5, 2024

• Quiz 1 is available for reservation
• Mock Quiz is next Monday through Wednesday

Lecture 3 Review: Stack

❑ Order of Access

❑ Two Main Operations

❑ Overflow vs. Underflow

❑ Hardware vs. Software Implementation

❑ Top of Stack Pointer (stack pointer)

2

➢ In the following two figures, which stack is empty? (Note: STACK_TOP points to the next
available spot.)

Run-Time Stack

• Information of an invoked function
(subroutine) is stored in a memory
template called the activation
record or stack frame.

• Functions’ activation records are
pushed onto the Run-Time Stack in
the order they are invoked.

❖ Supervisor Stack is different from
Run-Time Stack (more details at
the end of the semester). 3

Palindrome Check Using a Stack

A word, phrase, number or other sequence of characters which reads the same
forward or backward.
• Madam
• Kayak
• Was it a car or a cat I saw
• 123456654321

➢ How can we perform a palindrome check using a stack?

4

Balanced Parentheses Check Using a Stack

Examples of balanced parentheses:

(()()()()) (((()))) (()((())()))

Examples of unbalanced parentheses:

((((((()) ())) (()()(()

Open parenthesis ‘ (’ – ______________ to the Stack

Close parenthesis ‘) ’ – ______________ from the stack

Assuming the expression would fit into the stack, unbalanced expression can be
found under two situations:

1. At the end of the expression –

2. While entering expression –
5

Postfix Expression (input is single digit operand)

Infix Postfix

(3+4)-5 34+5-

2^(8-4)

7+(9-6)/3

 512+4*+3-

Note: ‘12-’ is 1-2 not 2-1

➢ Are these inputs valid postfix expressions? How would your program know?

• 46*-

• 13+57

6

Arithmetic Using a Stack

Implement an ADD subroutine that pops two numbers from a stack and perform
the add operation (see flowchart below).

7

Implement ADD Subroutine

8

• R6 should be used as stack pointer (points to the next available spot on the stack)

• Assume PUSH, POP and CHECK_RANGE subroutines are given & callee-saved

; PUSH

; Input: R0 (value to be stored on stack)

; Output: R5 (0 – success, 1 – failure)

; POP

; Output: R0 (value to be loaded from stack)

; Output: R5 (0 – success, 1 – failure)

; CHECK_RANGE: return 0 if value is within -100 to 100 decimal,

; otherwise return 1

; Input: R0 (value to be checked)

; Output: R5 (0 – success, 1 – failure)

➢ What do we need to consider when implementing the ADD subroutine?

; ADD subroutine – pop two numbers from stack,

; perform ‘+’ operation and then push result back to the stack

; Output: R5 (0 – success, 1 – failure)

; save registers

; Initialize R5

; first pop

; check return value of first pop, go to EXIT if failed (R5 = 1)

9

; second pop

; check result of second pop, go to RESTORE_1 if it failed

; add two numbers

; check range of sum, go to RESTORE_2 if it failed

; everything is good, push sum to stack

10

RESTORE_1

; put back first number

RESTORE_2

; put back both numbers

EXIT

; restore registers

RET

STACK_START .FILL x4000

STACK_END .FILL x3FF0

STACK_TOP .FILL x4000 11

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

