ECE 220 Computer Systems & Programming

Lecture 2 — Repeated Code: TRAPs and Subroutines
August 29, 2024

* Mock quiz (extra-credit) is now available for reservation E ILLINOIS
on PrairieTest and should be taken between 9/9 and 9/11

at CBTF Electrical & Computer Engineering

GRAINGER COLLEGE OF ENGINEERING

Repeated Code

x0000
Trap Vector Table
x00FF
.: x0100
Example: input from keyboard Interrupt Vector Table
, . . x01FF
* |t's used often and has too many specific details %0200
for most programmers. | Operating systemand ~ }
* Improper usage could breach security of the g Supervisor Stack 1
SYStem. x2FFF
x3000
Solution: make this part of the OS |
7 Available for /,
Service Call / System Call g user programs {
1. User program invokes system call
2. Operating system code performs operation
xFDFF
3. Returns control to user program xFE00
Device register addresses
xFFFF

In LC-3, this is done through the TRAP mechanism. 5

E ECE ILLINOIS

TRAP Mechanism

1. A set of service routines executed by the OS
2. A table of the starting addresses of these service routines

3. The TRAP instruction

4. A Linkage back to the user program

3

E ECE ILLINOIS

TRAP Instruction in LC-3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TRAP|11/1/11/00 0|0
\ J\ AN /
N v 4
opcode unused trap vector
ecor —symbol L howne

x20 GETC Read a single character (no echo)
x21 ouT Output a character to monitor
x22 PUTS Write a string to monitor
x23 IN Print prompt to monitor, read and echo character from keyboard
x24 PUTSP Write a string to monitor, two characters per memory location
x25 HALT Halt the program
X26 Write a number to monitor (undocumented)

4

ECE ILLINOIS

User Program System Control Block

Flow of Control

x0023 [0000 0100 1010 0000

1111 0000 0010 0OO11

Service Routine

B

1100 000 111 0000O0O

x04A0

RET 111/00/0/00 1/1 1 0/00000O0

opcode R7 5

E ECE ILLINOIS

TRAP Example

.ORIG x3000

AND RO, RO, #0 ;init RO

ADD RO, RO, #4 ;set RO to 4
ADD R7, RO, #5 ;set R7 to 9
ADD RO, RO, #1 ;increment RO
ADD R7, R7, #1 ;increment R7

IN ;same as ‘TRAP x23’

ADD RO, RO, #1 ;increment RO
ADD R7, R7, #1 ;increment R7

HALT
.END

» What are the values in RO and R7 right before IN? How about right before HALT? 6

E ECE ILLINOIS

Saving & Restoring Registers

We must save the value of a register if its value will be destroyed by the
service routine and the value will be needed after that action.

Two Conventions for Saving & Restoring Registers

1. Callee-saved (knows what it alters, but does not know what will be needed
by calling routine)

 Before start,

 Before return,

2. Caller-saved (know what it needs later, but may not know what gets altered
by callee routine)

7

E ECE ILLINOIS

Subroutines

Service routines (TRAP) provide 3 main functions

e Shield programmers from system-specific details

* Write frequently-used code just once

* Protect system recourses from malicious/clumsy programmers

Subroutines provide the same functions for non-system (user) code

> What are some of the reasons to use subroutines?
8

E ECE ILLINOIS

Invoking Subroutines using JSR/JSRR

* A subroutine in LC-3 can be invoked by using JSR/JSRR instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
JSR 1011|001
- / o /
' '
opcode PCoffsetll
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
JISRR 'O 1 0 0|0
. /
~ o N J
opcode BaseR

* To return from a subroutine, use RET instruction
9

E ECE ILLINOIS

Passing Information to/from Subroutines

Argument
* Avalue passed into a subroutine (needed by the subroutine to do its job)

Return Value

e A value passed out of a subroutine (the value you called the subroutine to
compute)

10

E ECE ILLINOIS

Saving/Restoring Registers in Subroutines

1. Generally use , except for

2. Save anything that the subroutine will alter internally that should not be visible
when the subroutine returns

3. It’s good practice to restore

* Nested subroutines

, Main user program : subroutine 1

: subroutine 2

JSR SUB1 ISR SUB?2
RET

RET

11

E ECE ILLINOIS

Subroutine Example

.ORIG x3000 » Is there any bugs?

> Where in the code should we save

JSR SUBTR i
and restore registers?

HALT » How can we compute 2x2—-3x +1?

;SUBTR subroutine computes Rl minus R2
;IN: R1, R2
;OUT: RO € R1-R2

SUBTR
NOT R2, R2
ADD R7, R2, #1 ;get -R2
ADD RO, R1l, R7 ;RO = R1-R2
RET

.END 12

E ECE ILLINOIS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

