
ECE 220 Computer Systems & Programming

Lecture 2 – Repeated Code: TRAPs and Subroutines

August 29, 2024

• Mock quiz (extra-credit) is now available for reservation
on PrairieTest and should be taken between 9/9 and 9/11
at CBTF

Repeated Code

Example: input from keyboard

• It’s used often and has too many specific details
for most programmers.

• Improper usage could breach security of the
system.

Solution: make this part of the OS

Service Call / System Call

1. User program invokes system call

2. Operating system code performs operation

3. Returns control to user program

In LC-3, this is done through the TRAP mechanism.
2

TRAP Mechanism

1. A set of service routines executed by the OS

2. A table of the starting addresses of these service routines

3. The TRAP instruction

4. A Linkage back to the user program

3

TRAP Instruction in LC-3

4

Vector Symbol Routine

x20 GETC Read a single character (no echo)

x21 OUT Output a character to monitor

x22 PUTS Write a string to monitor

x23 IN Print prompt to monitor, read and echo character from keyboard

x24 PUTSP Write a string to monitor, two characters per memory location

x25 HALT Halt the program

x26 Write a number to monitor (undocumented)

Flow of Control

5

x0023

x04A0

TRAP Example

.ORIG x3000

AND R0, R0, #0 ;init R0

ADD R0, R0, #4 ;set R0 to 4

ADD R7, R0, #5 ;set R7 to 9

ADD R0, R0, #1 ;increment R0

ADD R7, R7, #1 ;increment R7

IN ;same as ‘TRAP x23’

ADD R0, R0, #1 ;increment R0

ADD R7, R7, #1 ;increment R7

HALT

.END

➢ What are the values in R0 and R7 right before IN? How about right before HALT? 6

Saving & Restoring Registers

We must save the value of a register if its value will be destroyed by the
service routine and the value will be needed after that action.

Two Conventions for Saving & Restoring Registers

1. Callee-saved (knows what it alters, but does not know what will be needed
by calling routine)

• Before start, __________________________________

• Before return, __________________________________

2. Caller-saved (know what it needs later, but may not know what gets altered
by callee routine)

•

• 7

Subroutines

Service routines (TRAP) provide 3 main functions

• Shield programmers from system-specific details

• Write frequently-used code just once

• Protect system recourses from malicious/clumsy programmers

Subroutines provide the same functions for non-system (user) code

•

•

•

•

➢ What are some of the reasons to use subroutines?

8

Invoking Subroutines using JSR/JSRR

• A subroutine in LC-3 can be invoked by using JSR/JSRR instruction

• To return from a subroutine, use RET instruction

9

Passing Information to/from Subroutines

Argument

• A value passed into a subroutine (needed by the subroutine to do its job)

Return Value

• A value passed out of a subroutine (the value you called the subroutine to
compute)

10

Saving/Restoring Registers in Subroutines

1. Generally use __________________ , except for _________________

2. Save anything that the subroutine will alter internally that should not be visible
when the subroutine returns

3. It’s good practice to restore __________________________________

• Nested subroutines

11

; main user program

…
JSR SUB1
…

; subroutine 1

…
JSR SUB2
…
RET

; subroutine 2

…

RET

Subroutine Example

.ORIG x3000

...

JSR SUBTR

...

HALT

;SUBTR subroutine computes R1 minus R2

;IN: R1, R2

;OUT: R0  R1-R2

SUBTR

 NOT R2, R2

 ADD R7, R2, #1 ;get -R2

ADD R0, R1, R7 ;R0 = R1-R2

RET

.END 12

➢ Is there any bugs?

➢ Where in the code should we save
and restore registers?

➢ How can we compute 2x2 – 3x + 1?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

