
ECE 220 Computer Systems & Programming

Inheritance, Polymorphism, Virtual Function

Inheritance & Abstraction

C++ allows us to define a class based on an existing class, and the new class will
inherit members of the existing class.
§ the existing class – base class
§ the new class – derived class

A derived class inherits all base class member functions with the following
exceptions:
§ Constructors, destructors and copy constructors of the base class.
§ Overloaded operators of the base class.
§ The friend functions of the base class.

class orthovector : public vector{
protected:
int d; //direction can be 0,1,2,3, indicating r, l, u, d

public:
orthovector(int dir, double l){

const double halfPI = 1.507963268;

d = dir;

angle = d*halfPI;

length = l;

}

orthovector() {d = 0; angle = 0.0; length = 0.0;}

double hypotenuse(orthovector b){

if((d+b.d)%2 == 0) return length + b.length;

return (sqrt(length*length + b.length*b.length));

}

};

Access public protected private

Same Class Y Y Y

Derived Class Y Y N

Outside Class Y N N

Polymorphism

§ a call to a member function will cause a different function to be executed
depending on the type of the object that invokes the function

Example:
//base class
class Shape{

protected:
double width, height;
public:
Shape() {width = 1; height = 1;}
Shape(double a, double b) { width = a; height = b; }
double area() { cout << “Base class area unknown” << endl;

return 0; }
};

int main(){
Rectangle rec(3,5);
Triangle tri(4,5);

rect.area();
tri.area();

return 0;
}

//derived classes
class Rectangle : public Shape{

public:
Rectangle(double a, double b) : Shape(a,b){}
double area() {

}
};

class Triangle : public Shape{
public:
Triangle(double a, double b) : Shape(a,b){}
double area() {

}
};

Base Class & Derived Class
//base class
class Shape{

protected:
double width, height;
public:
Shape() {width = 1; height = 1;}
Shape(double a, double b) { width = a; height = b; }
double area() { cout << “Base class area unknown” << endl;

return 0; }
};
//derived class
class Rectangle : public Shape{

public:
Rectangle(double a, double b) : Shape(a,b){}
double area() {
cout << "Rectangle object area is " << width*height << endl;
return (double)width*height; }

};

Declared Type vs. Actual Type

int main(){
Shape *ptr;
Rectangle rec(3,5);
Triangle tri(4,5);

//use ptr to point to rec object
ptr = &rec;
ptr->area();

return 0;
}

What would this program print?

4

Virtual Function
§ virtual functions are member functions in the base class you expect to

redefine in the derived classes
§ derived class declares instances of that member function

class Shape{

protected:
int width, height;
public:
Shape(int a, int b) { width = a; height = b; }
virtual int area() { cout << “Base class area.” << endl; return 0; }

};
class Rectangle : public Shape{

public:
Rectangle(int a, int b) : Shape(a,b){}
int area() {

cout << “Rectangle class area.” << endl;
return width*height; }

};

Virtual Function Table (VTable)

§ stores pointers to all virtual functions
§ created for each class that uses virtual functions
§ lookup during the function call

Abstract Base Class & Pure Virtual Functions

class Shape{
protected:
int width, height;
public:
Shape(int a, int b) { width = a; height = b; }
virtual int area()=0; //pure virtual function – it has no body

};

int main(){
Shape shape1(2,4); // this will cause compiler error!
Shape *p_shape1; // this is allowed

}

§ derived class must define a body for this virtual function, or it will also be
considered an abstract base class

