
ECE 220 Computer Systems & Programming

Intro to C++

C++ - Class & Encapsulation

4

C C++

§ Created in 1979 by Bjarne Stroustrup at Bell Labs, as an extension to C
§ It’s an object oriented language

OOP Concepts:
Encapsulation, Inheritance, Polymorphism, Abstraction

Class in C++ is similar to Struct in C, except it defines the data structure AND
§ control “who” can access that data
§ provide functions specific to the class

Example: C vs. C++ for adding two vectors

Concepts Related to Class

An object is an instance of the class
§ shares the same functions with other objects of the same class
§ but each object has its own copy of the data

Constructors & Destructors
§ Constructor – a special member function that creates (initiates) a new object
§ Destructor – a special member function that deletes an object (when it goes

outside of scope)

5

member functions (also called methods) - functions that are part of a class

Private vs. Public members
§ private members can only be accessed by member functions (private

access is the default in a class)
§ public members can be accessed by anyone

Basic Input / Output

cin – standard input stream
cout – standard output stream

namespace –
“using namespace” directive tells compiler the subsequent code is using names
in a specific namespace (otherwise you need to use std::identifier)

Example:
#include <iostream>
using namespace std;
int main(){

char name[20];
cout << “Enter your name: ”;
cin >> name; //cin.getline(name, sizeof(name));
cout << “Your name is: ” << name << endl;

}
6

Exercise – Write Constructors
class Rectangle(

int width, height;

public:

Rectangle();

Rectangle(int, int);

int area() {return width*height;}
};

Rectangle::Rectangle(){

//set both width and height to 0

}
Rectangle::Rectangle(int a, int b){

//set width to a and height to b

}

Exercise – Access Member in a Class

int main(){
Rectangle rect1(3,4);
Rectangle rect2;

//print rect1’s area

//print rect2’s area

return 0;
}

What is the area of rect1? How about rect2?

8

Dynamic Memory Allocation

new – operator to allocate memory (similar to malloc in C)
delete – operator to deallocate memory (similar to free in C)
Use delete [] whenever you allocated as an array

Example:
int *ptr;
ptr = new int;

delete ptr;

int *ptr;

ptr = new int[10];
delete [] ptr;

3

Explicit References

§ type &identifier – identifier is a variable of type reference-to-type
§ references are lvalues
§ const type &identifier – cannot change the referenced thing
§ type & const identifier – not allowed
§ Can pass-by-reference: cleaner syntax

Function Overloading

§ In C, each function has exactly one type
§ C++ allows overloading: multiple implementations for different parameter

types (return type cannot be the only distinguishing type)
§ Compiler chooses implementation based on types chosen

int sum(int a, int b) { return a+b; }
float sum(float a, float b) { return a+b; }

Operator Overloading
Redefine built-in operators like +, -, *, <, >, = in C++ to do what you want
Example:
class vector {

Protected:
double angle, length;
public:
//constructors & other member functions
…
vector operator +(const vector &b) {

vector c;
double ax = length*cos(angle);
double bx = b.length*cos(b.angle);
double ay = length*sin(angle);
double by = b.length*sin(b.angle);
double cx = ax+bx;
double cy = ay+by;
c.length = sqrt(cx*cx+cy*cy);
c.angle = acos(cx/c.length);
return c;}

};

vector c(1.5,2);
vector d(2.6,3);

//before operator overload
vector e = c.add(d);

//after operator overload
vector e = c + d;

5

