
ECE 220 Computer Systems & Programming

Structs & Dynamic Memory Allocation

Pointer to Struct

student ece220[200];
student s1;
student *arr_ptr, *s_ptr;
arr_ptr = ece220; //pointer to a struct array
s_ptr = &s1; //pointer to a struct

strncpy(arr_ptr->Name, “John Doe”, sizeof(s1.Name));
arr_ptr->UIN = 123456789;
arr_ptr->GPA = 3.89;
//which student record has been changed?

arr_ptr++; //where is ptr pointing to now?

//What is the difference between the following function calls?
PrintName(s1);
PrintName(&s1); 4

typedef struct StudentName
{

char First[30];
char Middle[30];
char Last[40];

}name;

student ece220[200];
student *ptr;
ptr = ece220;

//How can we set the ‘First’ name in the first student record?
strncpy(, “John”,);

5

typedef struct StudentStruct
{

name Name;
int UIN;
float GPA;

}student;

Struct within a Struct

First[0]

…

First[29]

Middle[0]

…

Middle[29]

Last[0]

…

Last[39]

UIN

GPA

First[0]

…

First[29]

Middle[0]

…

Middle[29]

…

ece220[0]

ece220[1]

6

name

Static vs. Dynamic Memory Allocation

Static Dynamic

Mechanism of allocation Based on Declaration Explicit Allocation Call

Lifetime of memory Forever Until Freed

Location of memory Global Data Heap

Size of allocation Fixed at Compile Time Chosen at Runtime
7

malloc & free

void *malloc(size_t size);
§ allocates a contiguous region of memory on the heap
§ size of allocated memory block is indicated by the argument
§ returns a generic pointer (of type void *) to the memory, or NULL in case of

failure
§ allocated memory is not clear (there could be left over junk data!)

void free(void *ptr);

§ frees the block of memory pointed to by ptr
§ ptr must be returned by malloc() family of functions

8

Example using malloc & free:

int *ptr = (int *)malloc(sizeof(int));
if(ptr == NULL){

printf(“ERROR - malloc failure!”);
return 1;}

*ptr = 10;
free(ptr);

v How do we dynamically allocate space for an int array with 10 elements?

v What is happening in the block of code below?

int *ptr = (int *)malloc(sizeof(int));
*ptr = 5;
int *ptr_2 = (int *)malloc(sizeof(int));
*ptr_2 = 6;
ptr = ptr_2;

9

Exercise:

typedef struct studentStruct
{

char *NAME;
int UIN;
float GPA;

}student;

1. Dynamically allocate memory for 200 student records (hint: you will also
need to allocate an array of 100 chars to hold the name for each record)

2. Initialize name to “To be set”, UIN to -1 and GPA to 0.0 for all 200 records
3. Free up memory space for all the records

10

calloc & realloc

void *calloc(size_t n_items, size_t item_size);
§ similar to malloc(), also sets allocated memory to zero
§ n_item: the number of items to be allocated, item_size: the size of each item

à total size of allocated memory = n_items * item_size

void *realloc(void *ptr, size_t size);
§ reallocate memory block to a different size (change the size of memory block

pointed to by ptr)
§ returns a pointer to the newly allocated memory block (it may be changed)
§ Unless ptr == NULL, it must be returned by the malloc() family of functions
§ if ptr == NULL à same as malloc()
§ if size == 0, ptr != NULL à same as free()

3

Example using calloc & realloc:

v What does this block of code do?
char *ptr2 = calloc(50, sizeof(char));
if(ptr2 == NULL){

printf(“ERROR – calloc failure!”);
return 1;}

strncpy(ptr2, “Example using calloc”, 50);

v What happens now?
char *ptr3 = realloc(ptr2, 100*sizeof(char));
if(ptr3 == NULL){

printf(“ERROR – realloc failure!”);
return 1;}

v How much memory are we deallocating here?
free(ptr3); 4

Exercise:

typedef struct studentStruct
{

char *NAME;
int UIN;
float GPA;

}student;

1. Dynamically allocate memory for 200 student records (hint: you will also
need to allocate an array of 100 chars to hold the name for each record)

2. Initialize name to “To be set”, UIN to -1 and GPA to 0.0 for all 200 records
3. Add 200 more student records and initialize them as in step 2
4. Free up memory space for all the records

5

Common Mistakes in Dynamic Memory Allocation

§ Dangling Pointers
§ Memory Leaks
§ Accessing Beyond Bounds

Dynamic Memory Allocation Summary

§ Static vs. Dynamic allocation
§ Functions: malloc(), free(), calloc(), realloc()
§ Memory Leak vs. Segmentation Fault

6

