ECE 220 Computer Systems & Programming

!

lidhenn
[dRRan,
il
Wiyl
il

Visauununn

|

L L]
'SRRREI

/]]
(711
L[]

Ly

ILLINOIS

ECE ILLINOIS

Direct

Data Blocks
Indirect
Inode Data Blocks
Information
Double Indirect
! Blocks of Data Blocks
2 Pointers
3 {
1
: : 2 Blocks of
I I I I Pointers /‘Ii
| 1
128 —pt 1
13
2
14
15 ! ! I
‘\s 2 128 /'l
\\ | I
N 128 . 1 I R
S \
\\ \\ 2
\s ‘\ | I
A N
S 128
> \\
\
\
\
\
\
4

ECE ILLINOIS OirriNoTs

Input / Output Streams

Input

Device HH ASCII Stream scanf (“2d”, &x)
I/O Device operates using In C, we abstract away the 1/0O
1/0 protocol (such as memory mapped 1/0) details to an 1/0 function call

ECE ILLINOIS IUrrriNnoTs

Stream Abstraction for 1/0O

All character-based I/O in C is performed on text streams.
A stream is a sequence of ASCII characters, such as:

= the sequence of ASCII characters printed to the monitor
by a single program

= the sequence of ASCII characters entered by the user
during a single program

= the sequence of ASCII characters in a single file
Characters are processed in the order in which they were added to the stream.

" e.g., aprogram sees input characters in the same order
as the user typed them.

Standard Streams:

Input (keyboard) is called stdin.
Output (monitor) is called stdout.
Error (monitor) is called stderr. 3

ECE ILLINOIS IUrrriNnoTs

Stream Buffering

‘ Inp-ut Hm ASCII Stream Program
Device

Input device is the producer; Program is the consumer

We want producer and consumer to be operating independently
Why??? Think Netflix over spotty internet connection

* We can accomplish that via buffering

ECE ILLINOIS IUrrriNnoTs

Simple Buffer

Taﬂ——————l

ECE ILLINOIS

Buffer Size

Head

Producer adds data at Tail

Consumer removes data
from Head

Buffer Full?
Buffer Empty?
Concept of circular buffer

Also called First in, First Out
(FIFO) or Queue

ILLINOIS

Basic I/O Functions

The standard 1/0 functions are declared in the <stdio.h> header file.

Function Description

putchar Displays an ASCII character to the screen.
getchar Reads an ASCII character from the keyboard.
printf Displays a formatted string.

scanf Reads a formatted string.

fopen Open/create a file for 1/0.

fclose Close a file for 1/0.

fprintf Writes a formatted string to a file.

fscanf Reads a formatted string from a file.
fgetc Reads next ASCII character from stream.
fputc Writes an ASCII character to stream.
fgets Reads a string (line) from stream.

fputs Writes a string (line) to stream.

EOF & feof End of file

ECE ILLINOIS OirriNoTs

How to use these 1/0 functions

llr” (] /BN (PN
4

FILE* fopen(const char* filename, const char* mode) //mode: w”, “a”...
success-> returns a pointer to FILE

failure-> returns NULL

int fclose(FILE* stream)
success-> returns O
failure-> returns EOF (Note: EOF is a macro, commonly -1)

int fprintf(FILE* stream, const char* format, ...)
success-> returns the number of characters written

failure-> returns a negative number

int fscanf(FILE* stream, const char* format, ...)
success-> returns the number of items read; O, if pattern doesn’t match
failure-> returns EOF

ECE ILLINOIS IUrrriNnoTs

int fgetc(FILE* stream)
success-> returns the next character
failure-> returns EOF and sets end-of-file indicator

int fputc(int c, FILE* stream)
success-> write the character to file and returns the character written
failure-> returns EOF and sets end-of-file indicator

char* fgets(char* string, int num, FILE* stream)
success-> returns a pointer to string
failure-> returns NULL and sets the end-of-file indicator

int fputs(const char* string, FILE* stream)
success-> writes string to file and returns a non-negative value
failure-> returns EOF and sets the end-of-file indicator

int feof(FILE* stream) //checks end-of-file indicator
if at the end of file-> returns a non-zero value
if not -> returns O

ECE ILLINOIS IUrrriNnoTs

int fseek(FILE *stream, long offset, int whence)
success-> 0
failure-> -1
whence: SEEK_SET, SEEK_CUR, SEEK_END

long ftell(FILE *stream)
success-> current offset
failure-> -1

int sprintf(char *str, const char *format, ...)
int sscanf(const char *str, const char *format, ...)

ECE ILLINOIS IUrrriNnoTs

Exercise: Read an mxn matrix from file in_matrix.txt and write its transpose to file
out_matrix.txt. The first row of the file specifies the size of the matrix.

Hint: use fscanf to read from a file and use fprintf to write to a file.

#include <stdio.h> in_matrix.txt
int main () {
_ _ 23
FILE *in file; 123
FILE *out file;
- 456
//
in file = fopen("in matrix.txt", "r");
if (in file == NULL) i
return -1;
// out_matrix.txt
int m, n; 32
fscanf(in file, "%d %d", &m, é&n);
int matrix[m] [n]; 14
25
36

ECE ILLINOIS IUrrriNnoTs

//
out file = fopen("out matrix.txt", "w");
if (out_file == NULL)

return -1;

//
fprintf (out file, "%d %d\n", n, m);

return 0;

ECE ILLINOIS IUrrriNnoTs

