ECE 220 Computer Systems & Programming
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Input / Output Streams

Input

Device HH ASCII Stream scanf (“2d”, &x)
I/O Device operates using In C, we abstract away the 1/0O
1/0 protocol (such as memory mapped 1/0) details to an 1/0 function call

ECE ILLINOIS IUrrriNnoTs




Stream Abstraction for 1/0O

All character-based I/O in C is performed on text streams.
A stream is a sequence of ASCII characters, such as:

= the sequence of ASCII characters printed to the monitor
by a single program

= the sequence of ASCII characters entered by the user
during a single program

= the sequence of ASCII characters in a single file
Characters are processed in the order in which they were added to the stream.

" e.g., aprogram sees input characters in the same order
as the user typed them.

Standard Streams:

Input (keyboard) is called stdin.
Output (monitor) is called stdout.
Error (monitor) is called stderr. 3
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Stream Buffering

‘ Inp-ut Hm ASCII Stream Program
Device

Input device is the producer; Program is the consumer

We want producer and consumer to be operating independently
Why??? Think Netflix over spotty internet connection

* We can accomplish that via buffering

ECE ILLINOIS IUrrriNnoTs




Simple Buffer

Taﬂ——————l
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Buffer Size

Head

Producer adds data at Tail

Consumer removes data
from Head

Buffer Full?
Buffer Empty?
Concept of circular buffer

Also called First in, First Out
(FIFO) or Queue
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Basic I/O Functions

The standard 1/0 functions are declared in the <stdio.h> header file.

Function Description

putchar Displays an ASCII character to the screen.
getchar Reads an ASCII character from the keyboard.
printf Displays a formatted string.

scanf Reads a formatted string.

fopen Open/create a file for 1/0.

fclose Close a file for 1/0.

fprintf Writes a formatted string to a file.

fscanf Reads a formatted string from a file.
fgetc Reads next ASCII character from stream.
fputc Writes an ASCII character to stream.
fgets Reads a string (line) from stream.

fputs Writes a string (line) to stream.

EOF & feof End of file
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How to use these 1/0 functions
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FILE* fopen(const char* filename, const char* mode) //mode: w”, “a”...
success-> returns a pointer to FILE

failure-> returns NULL

int fclose(FILE* stream)
success-> returns O
failure-> returns EOF (Note: EOF is a macro, commonly -1)

int fprintf(FILE* stream, const char* format, ...)
success-> returns the number of characters written

failure-> returns a negative number

int fscanf(FILE* stream, const char* format, ...)
success-> returns the number of items read; O, if pattern doesn’t match
failure-> returns EOF
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int fgetc(FILE* stream)
success-> returns the next character
failure-> returns EOF and sets end-of-file indicator

int fputc(int c, FILE* stream)
success-> write the character to file and returns the character written
failure-> returns EOF and sets end-of-file indicator

char* fgets(char* string, int num, FILE* stream)
success-> returns a pointer to string
failure-> returns NULL and sets the end-of-file indicator

int fputs(const char* string, FILE* stream)
success-> writes string to file and returns a non-negative value
failure-> returns EOF and sets the end-of-file indicator

int feof(FILE* stream) //checks end-of-file indicator
if at the end of file-> returns a non-zero value
if not -> returns O
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int fseek(FILE *stream, long offset, int whence)
success-> 0
failure-> -1
whence: SEEK_SET, SEEK_CUR, SEEK_END

long ftell(FILE *stream)
success-> current offset
failure-> -1

int sprintf(char *str, const char *format, ...)
int sscanf(const char *str, const char *format, ...)
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Exercise: Read an mxn matrix from file in_matrix.txt and write its transpose to file
out_matrix.txt. The first row of the file specifies the size of the matrix.

Hint: use fscanf to read from a file and use fprintf to write to a file.

#include <stdio.h> in_matrix.txt
int main () {
_ _ 23
FILE *in file; 123
FILE *out file;
- 456
//
in file = fopen("in matrix.txt", "r");
if (in file == NULL) i
return -1;
// out_matrix.txt
int m, n; 32
fscanf(in file, "%d %d", &m, é&n);
int matrix[m] [n]; 14
25
36
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//
out file = fopen("out matrix.txt", "w");
if (out_file == NULL)

return -1;

//
fprintf (out file, "%d %d\n", n, m);

return 0;

ECE ILLINOIS IUrrriNnoTs




