
ECE 220 Computer Systems & Programming

File I/O

Input / Output Streams

2

ASCII StreamInput
Device scanf(“%d”, &x)

I/O Device operates using
I/O protocol (such as memory mapped I/O)

In C, we abstract away the I/O
details to an I/O function call

Stream Abstraction for I/O
All character-based I/O in C is performed on text streams.
A stream is a sequence of ASCII characters, such as:

§ the sequence of ASCII characters printed to the monitor
by a single program

§ the sequence of ASCII characters entered by the user
during a single program

§ the sequence of ASCII characters in a single file
Characters are processed in the order in which they were added to the stream.

§ e.g., a program sees input characters in the same order
as the user typed them.

Standard Streams:
Input (keyboard) is called stdin.
Output (monitor) is called stdout.
Error (monitor) is called stderr. 3

Stream Buffering

ASCII StreamInput
Device Program

• Input device is the producer; Program is the consumer
• We want producer and consumer to be operating independently
• Why??? Think Netflix over spotty internet connection
• We can accomplish that via buffering

4

Simple Buffer

• Producer adds data at Tail
• Consumer removes data

from Head
• Buffer Full?
• Buffer Empty?
• Concept of circular buffer
• Also called First in, First Out

(FIFO) or Queue

Head

Tail

Buffer Size

5

Basic I/O Functions
The standard I/O functions are declared in the <stdio.h> header file.

Function Description
putchar Displays an ASCII character to the screen.
getchar Reads an ASCII character from the keyboard.
printf Displays a formatted string.
scanf Reads a formatted string.
fopen Open/create a file for I/O.
fclose Close a file for I/O.
fprintf Writes a formatted string to a file.
fscanf Reads a formatted string from a file.
fgetc Reads next ASCII character from stream.
fputc Writes an ASCII character to stream.
fgets Reads a string (line) from stream.
fputs Writes a string (line) to stream.
EOF & feof End of file 6

How to use these I/O functions

FILE* fopen(const char* filename, const char* mode) //mode: “r”, “w”, “a”,...
success-> returns a pointer to FILE
failure-> returns NULL

int fclose(FILE* stream)
success-> returns 0
failure-> returns EOF (Note: EOF is a macro, commonly -1)

int fprintf(FILE* stream, const char* format, …)
success-> returns the number of characters written
failure-> returns a negative number

int fscanf(FILE* stream, const char* format, …)
success-> returns the number of items read; 0, if pattern doesn’t match
failure-> returns EOF

7

int fgetc(FILE* stream)
success-> returns the next character
failure-> returns EOF and sets end-of-file indicator

int fputc(int c, FILE* stream)
success-> write the character to file and returns the character written
failure-> returns EOF and sets end-of-file indicator

char* fgets(char* string, int num, FILE* stream)
success-> returns a pointer to string
failure-> returns NULL and sets the end-of-file indicator

int fputs(const char* string, FILE* stream)
success-> writes string to file and returns a non-negative value
failure-> returns EOF and sets the end-of-file indicator

int feof(FILE* stream) //checks end-of-file indicator
if at the end of file-> returns a non-zero value
if not -> returns 0 8

int fseek(FILE *stream, long offset, int whence)
success-> 0
failure-> -1
whence: SEEK_SET, SEEK_CUR, SEEK_END

long ftell(FILE *stream)
success-> current offset
failure-> -1

int sprintf(char *str, const char *format, …)
int sscanf(const char *str, const char *format, …)

8

Exercise: Read an mxn matrix from file in_matrix.txt and write its transpose to file
out_matrix.txt. The first row of the file specifies the size of the matrix.
Hint: use fscanf to read from a file and use fprintf to write to a file.

10

#include <stdio.h>
int main(){

FILE *in_file;
FILE *out_file;

//
in_file = fopen("in_matrix.txt", "r");
if(in_file == NULL)

return -1;

//
int m, n;
fscanf(in_file, "%d %d", &m, &n);
int matrix[m][n];

2 3
1 2 3
4 5 6

in_matrix.txt

3 2
1 4
2 5
3 6

out_matrix.txt

//
out_file = fopen("out_matrix.txt", "w");
if(out_file == NULL)

return -1;

//
fprintf(out_file, "%d %d\n", n, m);

return 0;
} 11

